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Abstract: The promoter is a DNA sequence that regulates the expression of a particular gene. Knowledge of
the promoters used in gene constructs for genetic transformation is essential for successfully applying GM
technology. Promoters can be classified as constitutive, inducible and organ/tissue specific. The use of
mnducible and organ/tissue specific promoters has gained importance, because of its extensive applicability.
This review presents a summary of the different types of promoters with examples of some of them that have
been identified and characterized for genetic transformation of various plant species.
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INTRODUCTION

Conditions of biotic and abiotic stress in agricultural
crops can cause large yield losses worldwide. However,
progress in the generation of transgenic plants with
increased tolerance to such stresses, has been slow.
Heterogeneous conditions in the field, combined with
abiotic stress and global climate change are just some
of the challenges of modern agriculture (Mittler and
Blumwald, 2010).

Genetic transformation opens new perspectives in
breeding programs, expanding and providing new
genes for certain characteristics imposed by sexual
ncompatibility or genetic variability (Sartoretto et al.,
2008). The generation of genetically modified plants
15 a tool to achieve desirable characteristics n a
breeding program highlighting the achievement of higher
productivity and a lower impact on the enviromment. This
technology also makes it possible to obtain plants that are
more tolerant of different types of stress such as drought
and cold and more resistant to diseases and pests. As
indicated by Mittler and Blumwald (2010), a combmation
of innovative approaches that take into consideration the
physiological and genetic basis of different cultures, the
use of enzymes and proteins from other organisms and
other tools of genetics and improvement will be necessary
to significantly improve theplants” tolerance of external
factors. Studies related to the identification and
characterization of inducible and organ/tissue specific
promoters are interesting to allow genetic mampulation
and explore the genetic potential of several species of
agronomic and forestry interest. The choice of the

promoter used to construct the transgene depends
mainly on the intended goals of genetic transformation
(Potenza et al., 2004). Specific promoters may direct the
expression of genes which confer resistance to pathogens
in a directed manner (Twyman, 2003). In the case of toxins
acting against pests, it 1s possible to limit gene expression
to only onetarget organ of the plant, preventing the
presence of toxins in the product that will be consumed
by the population and also in other organs that are used
in amimal nutrition, thereby reducing the probability of
affecting non-target organisms (Potenza et al, 2004).
For production of biopharmaceuticals, the use of
organ-specific promoters is important to express the gene
of interest in those organs that are able to produce the
protein in an appropriate mamer (Twyman ef al., 2003).
IMPORTANCE OF PROMOTERS

The promoter is the central processor of
regulation of a gene, since it contamns binding sites for
RNA polymerase and general transcription factors
responsible for gene transcription. Transcription factors,
in turn are activated under different situations such as
endogenous (auxin, gibberellin, salicylic acid, jasmonic
acid) and exogenous stimuli (light, pressure, humidity,
temperature). The combination of promoter and
transcription factors action determines the activation or
repression of gene expression (Smale and Kadonaga,
2003).

For most genes encoding proteins, transcription
initiation includes binding and activation of RNA
polymerase II (Potenza ef al, 2004) this step being the
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most regulated in gene expression. It is essentially
controlled by the promoter region of the gene
(Singh, 1998). In eukaryotes, the promoter region in
general has a conserved sequence (T/A) A (A/T) at about
30 base pairs (bp) of the transcription initiation point
which is termed TATA box and elements near the
promoters which are located approximately 100
(CCAAT box) and 200 bp (GC box) above the start point
of transcription (Smale and Kadonaga, 2003).

Processes that provide transcriptional modulation are
extremely complex; the elements contained in the promoter
sequences usually determine the correct starting point of
transcription, acting as activators or repressors, indicating
the place and the moment that this biological process
should occur (Butler and Kadonaga, 2002).

Promoters are a key tool in biotechnological
processes to ensure that expression of a gene of interest
is effective and regulated. The availability of promoters
that differ in their ability to regulate the spatial and
temporal patterns of transgene expression tends to
increase the success of the application of transgenic
technology. Over the years, several promoters have been
isolated from a wide variety of organisms and applied to
genetically engineered plant systems (Potenza et al.,
2004).

The promoter will mostly regulate the transgene
expression, since the transcription process is the first
gene regulation. However, expression of the transgene is
not uniform in all plants generated under the same
conditions as it is subjected to the endogenous
regulatory mechanism of the plant. This variability of
expression can be reduced by choosing an appropriate
promoter to regulate the transgene, improving the
efficiency of the technique (Butaye et al., 2005).

Current knowledge about the structure and functions
of promoters m eukaryotic systems was recently reviewed
by Porto ef al. (2014). These researchers also describe the
strategies used to isolate and analyze promoters and
procedures available to estimate their expression.

Promoters can be classified as constitutive, inducible
and organ or tissue-specific. A constitutive promoter
directs the expression of a gene in all tissues of a
plant during the various stages of development. A
tissue-specific promoter directs expression of the gene
only in certain tissues and may or may not be activated
during all stages of development. An inducible promoter
initiates gene expression in response to chemical, physical
or biotic and abiotic stresses (Careiro and Carneiro,
2011).

CONSTITUTIVE PROMOTERS
The promoters usually used in the production of

genetically modified plants include the 358 promoter of
the Cauliflower Mosaic Virus (CaMV 3558) and the

promoter of the virus gene encoding Ubiquitin (Ubi-1) of
maize (Hoshino, 2007). In particular, the CaMV 355
promoter is valuable because it provides high expression
in all regions of the transformed plant and is generally
available in the cassette vector used for transformation
which facilitates the sub-cloning of the transgene of
interest (Potenza et al, 2004).

Several other promoters that may be used for genetic
transformation come from different organisms. In the case
of constitutive promoters derived from the genome of
viruses, promoters of several viruses may be used in
addition to CAM 35 S: CAM 19 (Driesen et al., 1993), the
Mirabilis Mosaic Virus (MMVY) (Dey and Maiti, 1999)
and the Strawberry Ve Banding Virus (SVBV)
(Pattanaik et al., 2004). Among the constitutive promoters
from bacteria the promoters of nos gene (Shaw et al.,
1984) and ocs (Ellis et al., 1987) can be mentioned which
respectively encode the nopaline synthase and octopine
synthase both of Agrobacterium tumefaciens.

In the case of plants, the most widely used
constitutive promoters are the promoter of the gene
encoding ubiquitin of maize (Ubi-1) (Christensen and
Quail, 1996) and the actin gene from rice (Actl)
(McElroy et al., 1990).

However, the use of constitutive promoters causes
unnecessary gene expression increasing the possibility
of interference with other routes of plant development
(De Paoli et al., 2007). Some negative characteristics of the
use of constitutive promoters have been observed,
highlighting mainly phenotypic changes in transformed
plants (Matsuhara et al., 2000). Tn a study performed on
Solanum tuberosum differences were found when a
constitutive promoter (CaMV 353) or a stress inducible
rd29A promoter expression were used to drive Afehf
genes. In this case, the same level of freezing tolerance
was observed both in plants containing the constitutive
promoter and in plants containing the inducible promoter
when exposed to cold for a few hours. However, in the
plants containing the Afchf gene regulated by the
constitutive promoter, the leaves showed reduced size,
retarded flowering and reduction and/or lack of tuber
production (Pino et al., 2007).

Therefore, plant promoters that are activated
specifically when and where needed are ideal for genetic
engineering applications (Potenza et al., 2004).

INDUCED PROMOTERS

Promoters that are induced under certain stress
conditions, both biotic and abiotic are interesting
biotechnological tools for use in plant breeding programs.
In general, the stress-inducible promoters contain a
cis-acting sequence which is recognized by specific
transcription factors that induce the synthesis of proteins
only under conditions of stress (Jaglo et al., 2001). The
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Table 1: Examples of promoters induced by abiotic stress

Correspnding gene Inducer Organism References

HSPIi& 2 Thermal shock Arabidopsis thaliana Takahashi et al. (1992)

Rd29 Osmotic stress Arabidopsis thaliana Yamaguchi-Shinozaki and Shinozaki (1993)
adh Dehydration and cold stress Arabidopsis thaliana Dolferus et al. (1994)

rheS 34 Light Pisum sativign Kuhlemeier et ad. (1989)

Chn48 Ethylene Nicotiana tabacum Shinshi et al. (1995)

PvSR2 Heavy metals Phaseolus vilgaris Qi et ol (2007)

cgmitl Heavy metals Casuarina glaica Laplaze et ad. (2002)

HVADhnd5 Drought stress Hordeumn vilgare Kiao and Xue (2001)

PtDri02 Methyl jasmonate Popuius sp. Zheng et ai. (2011)

Table 2: Promoters induced by biotic stress

Promoters Inducer Organism References

CaPrx Nematode infection Coffea arabica Severino et al. (2012)
R232% and R2184 Blast fungus infection Oriza sciva Sasaki et ed. (2007)
OsNACé Fungus infection Oriza sativa Nakashima et al. (2007)
PP Pathogens Arabidopsis sp. Peng et al. (2004)

Germin-Like (GLP) proteins with various functions in the
development and protection of plants are also related to
inducible promoters. One of them is the ThGLP promoter
isolated from Tamarix hispida which was highly induced
by drought, salt, low temperature and treatment with
abscisic acid, its expression oceurring in leaves and roots
(Lietal, 2010). Table 1 lists some promoters induced by
abiotic stress.

Biotic stress-induced promoters also  deserve
attention because they are just as important as the
promoters induced by abiotic stress. Among the most
studied are the promoters induced by pathogens that are
quickly activated in response to stress and are effective
in the plant defense process (McDowell and Woffenden,
2003).

A well-studied inducible stress promoter is Gstl
promoter from potato which activates gene transcription
m response to infection by bacterial and fungal
pathogens in transgenic apple (Malnoy et al., 2006). In
transgenic citrus plants, the same promoter promoted
gene expression m response to iyury or to the
pathogen  Xanmthomonas  axonopodis  ssp.  citri
(Barbosa-Mendes et al., 2009). Another promoter that has
an important role in the plant defense system is the
promoter belongs to class 10 PR (pathogenesis related).
Coutos-Thevenot et al. (2001) related the combination of
this pathogen-inducible promoter and a defense gene, the
Vstl gene which may increase tolerance against fungi in
grape vine.

In order to improve pear resistance agamst fire blight
caused by Erwinia amylovora, a search for promoters
driving high-level expression of transgenes specifically
i response to this bacterial pathogen has been
undertaken. Malnoy et al. (2003) examined the ability of
hsr2037, str246C and sgd24 promoters of tobacco
(Nicotiana tabacum 1..) to drive expression of the wid4
reporter gene 1 transgenic pear. It was demonstrated that

two of them (sir246C and sgd24) were functional in pear,
a woody species botanically distant from tobacco and
activated by wounding and elicitors. They could therefore
be used to drive the expression of transgenes to promote
bacterial disease resistance (Table 2).

SPECTFIC PROMOTERS

The use of organ or tissue specific promoters that
induce and specifically control the expression of
transgenes in organ and/or tissue may be advantageous
to avoid a waste of energy and nutrients from the
transgenic plant when the protem of interest i1s not
necessary for the whole plant. Furthermore, the use of
these promoters is convenient in both the commercial
and scientific contexts and provides increased
biosecurity, among other advantages the wsolation and
characterization of appropriate promoters for plant genetic
engineering is therefore highly deswrable (Damell, 2002,
Potenza et al., 2004; Carneiro and Carneiro, 2011).

There are several promoters of viral, microbial and
plant origin able to direct organ-specific expression in
plants, however it is desirable that these promoters
originate from the same plant species orphylogenetically
related species because the regulatory systems are unique
and cannot act in the expected manner in distant
heterologous species (Tyagi, 2001).

ROOT-SPECIFIC PROMOTERS

Root-specific promoters are of particular interest,
since they promise a wide variety of applications.
Recombinant proteins can be expressed for almost
anything that 1s related to the root-soil nterface using
genetic  engineering for bioremediation of soil
contaminants, protection against drought, increased
salt tolerance, capture of macro and micronutrients and
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(Marzabal et al., 1998), the promoter of glutenin genes in
wheat (Lamacchia et al, 2001) and the promoter of
the ¢-Kaf gene mn sorghum (Ahmad et af., 2012).

Fruit-specific promoters were also cloned and tested
in several plants (Fig. 1) in tomato, Lefsm ! gene promoter
is specific to the early stages of fruit development
(Barg et al., 2005) in the case of Citrus unshiu, Cul.ead
promoter confers preferential expression m the fruit and
its expression 1s enhanced by plant hormones such as
abscisic acid and naphthalene acetic acid and abiotic
stresses such as cold and drought (Kim et al, 2011). In
addition, a fruit pulp specific promoter was identified by
He et al. (2013), it is the promoter of the B-gal gene that is
related to the softening of papaya pulp. This promoter
was used mn a silencing construction in order to reduce
the softening of the fruit of this species, thereby
lengthening its storage life.

Figueroa et al. (2009) observed that the promoter
of the FaFxp2 strawberry gene has a high level of
expression in the fruit during ripemung. Later on, in order
to achieve the specific expression of transgenes in
strawberry fruit, Schaart ef af. (2011) 1solated 5’ upstream
sequences of the FaExp2 gene. Two different lengths of
promoter fragments (0.7 and 1.6 kb) were isolated and
characterized and a standard specific expression in the
fruit achenes was observed in transformed plants.
Researchers are mvestigating the suitability of the
1.6pFabxp2 promoter to direct the expression of an
antifungal gene with the aim of increasing resistance to
fruit rot caused by Botrytis cinerea.

POLLEN-SPECIFIC PROMOTERS

Some pollen-specific promoters have been identified
and characterized (Fig. 1) including the promoter of
tomate lat32 gene encoding a cysteine-rich protein
preferentially transcribed in vegetative cells during
maturation of the pollen (Bate and Twell, 199%). Another
1solated promoter 1s the promoter of tomato SIFRK4 gene
that 1s stamen-specific and responsible for the metabolism
of fructokinase 4. This promoter is gradually activated
in pollen graing during the final stages of anther
development and upon pollen germination of transformed
plants of Arabidopsis thaliana (David-Schwartz et al.,
2013).

It is important to use specific promoters in pollen
gene silencing in order to prevent the flow of genes
from transgenic plants: this was the case of the promoter
of the gene CaMF2 where inhibition of the promoter
by Virus Induced Gene Silencing (VIGS) resulted in
low germmnation of pollen grams of Capsicum annuum
(Chen et al., 2011). Another example 1s the promoter of
LeMANS tomato gene with an endo-f-mannanase
function that is expressed in anthers and pollen during

development and can be used to control pollen fertility
and to increase the production of hybrid seeds
(Filichkin et al., 2004).

SPECIFIC PROMOTERSOF LEAVES AND
VASCULAR TISSUES

Leaf specific promoters are used most often to direct
the expression of genes only n leaves for disease control
and when the expression of certain genes 1s not desired in
other organs, especially in fruits (Fig. 1). Some promoters
direct the expression of genes in young leaves: the
promoter of the gene Zmglpl (“Germin-like protein”) in
maize caused abundant expression in new leaves and
meore abundant in mature leaves (Fan ez al., 2005) and the
promoter of the gene PrGLP did the same mn new leaves
and cotyledons of Pharbitis nil (Ono et al., 1996).

With regard to specific vascular tissue promoters,
Lauvergeat et al (2002) studied the promoter of
Eucalyptus gunnii gene EgCAD2 whose use in the
composition of expression cassettes allows direct
transgene expression in vascular tissues of perenmial
(vine and poplar) and herbaceous (tobacco) plants.
Another successful example is the promoter EgCCR of
Eucalyptus gunnii which directed transgene expression
in vascular tissue of the vine (Gago et al., 2011). Both
EgCAD2 and EgCCR promoters may contribute to an
important application of genetic eng meering which would
drive the expression of defense genes to vascular tissue
in order to increase vascular resistance to pathogens.
This new trait is extremely valuable for plants of economic
interest throughout the world (Lauvergeat et af., 2002,
Gago et al., 2011).

In citrus, Dutt et al (2012) studied the use
of phloem-specific rolC promoters from
Agrobacterium rhizogenes as antibacterial constructs
created to combat huanglongbing (HLB or citrus greening
disease), associated with a phloem-limited Gram-negative
bacteria where the Rice Tungro Bacilliform Virus promoter
(RTBV) showed high levels of expression of the gus gene
in citrus.

Another recently characterized promoter is the
promoter of the A#thspr gene of heat shock protein from
Arabidopsis  thaliana wlich showed expression in
vascular tissues in all organs of the transformed plants
indicating that this promoter has multiple roles m vascular
development and can be used to obtain plants resistant to
various other stresses (Zhang et al., 2014).

CONCLUSION
Due to the increase mn research related to genetic

transformation biosafety, concerns are arising and
researchers have carried out studies of gene expression in
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specific tissues and organ and have made efforts to
isolate promoters adding value to transgenes. The
applications of tissue/organ promoters are numerous and
the use of mnduced promoters to mimmize the negative
effects of unfavorable environmental conditions such as
drought, saline soils, low and high temperatures can be
emphasized.

Induced and organ/tissue specific promoters will
activate the expression of genes only in specific
situations which will reduce the energy expenditure of the
plant as it will be activated only when really needed. In
this way, productivity may be maintained, even under
unfavorable environmental conditions.

On the other hand, the pollen-specific promoters can
be used preferentially to control gene flow from
transgemnic plants, minimizing the risk of crossing between
non transgenic and genetically modified plants and
Increase envirommental security.
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