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Abstract: The problem of non-Newtonian blood flow through a stenosed artery is solved numerically where
the non-Newtoman rheology of the flowing blood 1s characterized by the generalized Casson’s fluid and
Herschel-Bulkley fluid. The necessary theoretical results such as resistance to flow, apparent viscosity and the
wall shear stress have been obtained in this analysis. An extensive quantitative analysis is performed through
numerical computations of the desired quantities having physiological relevance through their graphical
representations so as to validate the applicability of the present model. Tt has been shown that the resistance
to flow, apparent viscosity and wall shear stress increases with the size of the stenosis while decreases as
stenosis shape parameter increases. This study shows that non-Newtoman behavior of Herschel-Bulkley fluid

model is more appropriate.
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INTRODUCTION

The mtimal thickeming of stenotic artery was
understood as an early process m the beginming of
atherosclerosis. Atherosclerosis is a leading cause of
death in many countries. There 13 considerable evidence
that vascular fluid dynamics plays an important role in
development and progression of arterial stenosis which is
one of the most widespread diseases in human beings. A
Newtonian flud by defimition 1s one in which the
coefficient of viscosity is constant at all rates of shear.
Homogeneous liquids may behave closely like Newtonian
fluids. However, there are fluids that do not obey the
linear relationship between shear stress and shear strain
rate. Fluids that exhibit a non-linear relationship between
the shear stress and the rate of shear strain are called
non-Newtonian fluids. Blood behaviour is referred to as
non-Newtonian properties. These properties are of two
types as follows;, at low shear rates, the apparent
viscosity increases markedly-sometimes even a certain
vield stress 15 required for flow; i small tubes, the
apparent viscosity at higher rates of shear 1s smaller than
it is in larger tubes. These two types of anomalies are
often referred to as low shear and high shear effects,
respectively. It 15 thus concluded that the behaviour of
blood is almost Newtonian at high shear rate while at low
shear rate the blood exhibits yield stress and non-
Newtoman behaviour. In the series of the studies
(Casson, 1959, Chakravarty et al., 2004, Daripa and Dash,
2002; Fry, 1972), the effects on the cardiovascular system
can be understood by studying the blood flow in its
vicinity. In these studies the behavior of the blood has
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been considered as a Newtoman fluid. However, it may be
noted that the blood does not behave as a Newtonian
fluid under certeun conditions. It 1s generally accepted that
the blood, beimng a suspension of cells, behaves as a
non-Newtonian fluid at low shear rate (Haldar, 1985;
Hershey ef al., 1964). It has been pomnted out that the flow
behaviour of blood i a tube of small diameter (<0.2 mm)
and at <20 sec™' shear rate can be represented by a
power-low fluid (Jayaraman and Dash, 2001; LaBarbera,
1990). It has also been suggested that at low shear rate
{0.1 sec™), the blood exhibits yield stress and behaves
like a Casson-Model fluid. For blood flows in large arterial
vessels (ie, Vessel diameter =1 mm) which can be
considered as a large deformation flow, the predominant
feature of the rheological behavior of blood is its shear
rate  dependent viscosity and its fact on the
hemodynamics of large arterial vessel flows has not been
understood well. In this study, researchers nvestigated
the effect of non-Newtoman behavior of blood on the
resistance to flow, apparent viscosity and wall shear
stress m an artery by considering the blood as
Casson’s-Model and Herschel-Bulkley fluid and to
examine the effect of stenosis shape parameter,
researchers considered blood flow through an axially
non-symmetrical but radially symmetric stenosis such that
the axial shape of the stenosis can be change just by
varylng a parameter, m.

MATERIALS AND METHODS

Formulation of the problem: In the present analysis, it 1s
assumed that the stenosis develops in the arterial wall
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Fig. 1. Flow geometry of an axially non-symmetrical

stenosis

in an axially non-symmetric but radially symmetric manner
and depends upon the axial distance z and the height of
its growth. Tn such a case, the radius of artery, R(z) can be
written as follows (Fig. 1):

RR(Z) =1- A[L® 7 (z—d)— (z—d)®], d<z=d+L,

1]

=1 otherwise

()
where, R(z) and R, 1s the radius of the artery with and
without stenosis, respectively. L, 1s the stenosis length
and d indicates its location, m=>2 is a parameter
determining the stenosis shape and is referred to as
stenosis shape parameter. Axially symmetric stenosis
occurs when m = 2 and a parameter A 1s given by:

A= § m™my
R,Ly (m-1)

Where, & denotes the maximum height of stenosis
at z=d+ L /m"® Y,

Conservation equation and boundary condition: The
equation of motion for laminar and mcompressible,
steady, fully-developed, one-dimensional flow of blood
whose viscosity varies along the radial direction in an
artery reduces to:

0:7671:)4,1@

ér 1 &z (2)
0=-%

or

where (z, r) are co-ordinates with z measured along the
axis and r measured normal to the axis of the artery.
Following boundary conditions are introduced to solve
the above equations:
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du/ér=0 atr=0

u=0 atr = R(z)

T is finite atr=0 (3
P=F, atz=0

P=F atz=1L

Case 1; Casson’s Fluid Model: The Casson’s relation is
commonly written as:

0 = Tlufz i (H)uz (7d7u)112’ if 1,
; ar )
[_uj =0 if T=<1,
dr
__dpR,
’ dz 2
Where:
R, = The radius of the plug-flow region
T, = Yieldstress
T = Wall shear stress
= Denotes Casson’s viscosity coefficient
The volume rate of flow using Eq.16 1s defined as:
R 2 du 5
—pirt-yar (3)
Q=plri=7
By integrating Eq. 17, using Eq. 16 and 3 researchers
have:
4 112 4
e B e
8u dz 7R 3LR 21 R
(6)
Equation 18 can be rewritten as:
aR*( dph.._
= ——f
© 8 ( dzj ¥)
Where:
_ 16, _an 4. . 1. .
fiy)=|1-— +—(y)-—
5)=1-25)"+ 35) 5.7 |
With:
v=Xe <=1
Y R
From above equation pressure gradient 1s written as
follows:
( dPJ __8uQ )
dz;) =R'f(y)
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Integrating FEq. 19 using the condition P =P atz=0
and P = P at z=1.. Researchers have:

AP=P, - p,= M i az &)
Ry 5 (R(z)/R,) F(F(z))

The resistance to flow (resistive impedance) is
denoted by A and defined as follows:

s h ©)

The resistance to flow from Eq. 21 using Eq. 20 is
written as:

d+Lg
f[l J‘ dz (10)
d
where, f; 13 given by:
112 4
16 R 4 R 1R
fn — 1__ c +— col_ = c

Following the apparent viscosity (1) is defined as
follows:

1

(REIR ) (“)

I'Lapp =
The shearing stress at the wall can be defined as:

iz
T, = {:“2 + [pduJ ] (12)
R 0 dI'
r:R(z)

Case 2; Herschel-Bulkley Fluid Model: The stress-strain
relation of Herschel-Bulkley fluid is given as:

K (13)

Where:

2%
7z 2

1 = Denotes Herschel-Bulkley viscosity coefficient
Yield stress
Shear stress

o
Il

R, = The radius of the plug-flow region
u = The axial velocity along the z direction
n = The flow behavior index

The relation correspond to the vanishing of the
velocity gradients in regions in which the shear stress T
is less than the yield stress T, this implies a plug flow
wherever 1< T, when the shear rates in the fluid are very
high, t=1,, the power-law fluid behavior is indicated. By
Eq. 1 and 3 researchers get:

1in
dul P In 14
@) e
The flow of flux, Q is defined as:

Q=T2pur dr:pirz(f(du/dr))dr (15)

Substituting the value of f (t) from Eq. 1 in Eq. 7:

1in [3+i]
nf P R *
S 16
. 2[%] [nlJf(Y) e
n
r ((1!(1)4—1) ((1!n)+2)_
AT
R ((Un)+2)L R
R

4 ) {(1/a)+3)
T my 2)((1/n)+3)[(1 R] J

where:
¥y=(R_/R)=<<1

Usig Eq. & researchers have:

P:[_d_p]: s (1+l)n a7
dz) R"™\af(¥) n

to determine A, researchers integrate Hq. 11 for the
pressure P, and P, are the pressure at z = 0 and z = L,
respectively where L 1s the length of the tube:

1+3n Q _+1
T[RD 1 (18)

]J? dz
3 (R(2) /RO

AP=P -D, =
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The resistance to flow is given by the coefficient A is

defined as follows:

A=(P, —P,/Q) (19)

1 n
o | 2Q0+0)

Ay = W . (M)
O T
o o 4 {@J ()" dog Wl
RU
205" (-5, Ll
)
n
fo = 1 1
T {(1—?1 L —[(—1)[ T]?ln
[2 + —}(3 + —j
L n n .
(20)
Where:

¥ = (R/Ry)

When there 1s no stenosis in artery then R = R, the
resistance to flow:

1 n
20| 1+—
oo Q[ nj L (21)
N RE+3n b (fn)n

from Eq. 12 and 13 the ratio of (A/AN ) is given as:

nod+ Ly
A:ﬂzl_th(fu) j dz13 _
Ay L L 3 (REZV/R)™EF)
(22)
The apparent viscosity (p,/u) 18 defined as follow:

Ha = LR(2)/ R, Y E(T))

Figure 2 shows the variation of resistance to flow (1)
with stenosis shape parameter (m) for stenosis size (8/R,).
It 15 seen from Fig. 2 that the resistance to flow
decreases as stenosis shape parameter increases.
Maximum resistance to flow occurs at m = 2, 1 e., in the
case of symmetric stenosis. This result is therefore
consistent with the observation of Mishra er al. (2010).
Figure 3 shows the variation of resistance to flow with
stenosis length for different values of stenosis shape

37 2
2.8
2.6
2.4-
2.2-
2.0-
1.8
1.6

8 B g5

Resistance to flow

T T
0 0.1 0.2 0.3 0.4 0.5
Stenosis size
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Fig. 4. Varation of apparent viscosity with stenosis size
(n=12/3)

parameter. Figure 3 shows that resistance to flow
increases as stenosis length increases and decreases as
stenosis shape parameter increases. This result is
qualitative agreement with the observation of Neofytou
and Drikakis (2003).

Figure 4 shows variation of apparent viscosity with
Stenosis shape parameter. Figure 4 shows that apparent
viscosity decreases as shape parameter
but this increase 1s less due to non-
Newtonian behaviour of the blood. In addition, it may be
noted from the graph that the apparent viscosity
increases as stenosis size increases. This result is in
qualitative agreement with the result of Ookawara and
Ogowa (2000) and Pontrell: (2001). It may be observed that

stenosis
mcreases
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Fig. 5: Vanation of apparent viscosity with stenosis
length (n=1/3)
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from these results that the apparent viscosity increases as
the stenosis grows and remams constants outside from
the stenotic region. Figure 5 shows the variation of
apparent viscosity with stenosis length for different
values of stenosis shape parameter. Researchers observe
that the apparent viscosity sharply mcreases as length of
stenosis mcreases and decreases as stenosis shape
parameter increases.

Rachid and QOuazzam (2008) and Sankar and
Hemalatha (2006) have also noted the same results.
Figure 6 consist the varnation of resistance to flow with
stenosis shape parameter for different values of stenosis
size. Tt is observed here that the resistance to flow
decreases as the stenosis shape parameter increases. It
should also be noted here that the resistance to flow
decreases as stenosis size increases.

The results are therefore consistent with the
observation of Shalmanab et al. (2009) and Shukla et al.
(1980). Figure 7 shows the variation of resistance to flow
with stenosis length for different values of stenosis shape
parameter. In Fig. 7, resistance to flow mcreases as
stenosis length increases. Tt is also noticed here that
resistance to flow decreases as stenosis shape parameter
increases for fixed value of stenosis size. This result is
obvious because the lumen radius decreases as stenosis
size Increases (Srivastava and Mishra, 2010). Figure 8
shows the variation of resistance to flow with yield stress
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for different values of stenosis shape parameter. Tt is
evident from the graph that the resistance to flow
increases as yield stress increases. Figure 8 15 also
highlighted that resistance to flow decreases as
stenosis shape parameter increases (Tandon et al., 1991;
Tang et al, 2000). Figure 9 shows the variation of
apparent viscosity with stenosis shape parameter for
different values of stenosis size. It may be observed here
that the apparent viscosity decreases as shape parameter
of stenosis varies. Figure 9 is also depicted that apparent
viscosity decreases as stenosis size mcreases.

CONCLUSION

In this study, researchers have studied the effects of
the stenosis in an artery by considering the blood as
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Casson’s Fluid and Herscel-Bulkley Fluid Models. Tt has
been concluded that the resistance to flow and wall shear
stress increases as the size of stenosis increases for a
given non-Newtonian Model of the blood. The flow
resistance decreases with mcreasmg values of shape
parameter ‘m” and attains its maximal in the symmetric
stenosis case (m = 2) for any given stenosis size. Thus
the mcreasing value of the shape parameter would
cause a considerable increase in the flow of
blood. These increases are however small due to
non-Newtonian behaviour of the blood. Thus, it appears
that the non-Newtonian behaviour of the blood is helpful
in the functioning of diseased arterial circulation.
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