Research Journal of Biological Sciences 5 (2): 209-214, 2010

ISSN: 1815-8846
© Medwell Journals, 2010

Exogenous Nitric Oxide Negatively Impacts on Ethylene Emissions from
Intact and Fresh-Cut Tomato Fruit

Mourad A.M. Aboul-Soud
Center of Excellence in Biotechnology Research, College of Science,
King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia

Abstract: The objective of this study was to mvestigate the effect of Nitric Oxide (NO) on the production of
basal and wound-associated stress ethylene (C,H,) from intact and fresh-cut tomato fruits, respectively. For
this purpose, a non-invasive and online sampling technique based on Laser Photoacoustic Spectroscopy
(LPAS) was employed. Pre-treatment of intact Mature Green (MG) tomato fruits with a low concentration
(200 ppbv) of NO gas resulted in a sigmficant and steady average reduction of 33% in the basal-level C,H,
production to 6.0+£0.44 pmol h™ g fwi™' compared to 2.0=0.18 pmel h™' g fwt™ in the non-treated MG control.
Moreover, NO gas fumigation of fresh-cut MG tomato fruit slices caused a 60% reduction in peak wound-
induced C,H, levels compared to untreated fresh-cut control fruit. These results clearly indicate that NO
pre-treatment negatively impacts on both basal and wound-associated stress C,H, emission levels, respectively
in both intact and fresh-cut tomato fruits. These results are discussed m the light of possible mechamsms of
NO interference with C,H, biosynthesis. Moreover, the potential utilization of NO in controlling stress-induced
and undesirable biochemical changes which are known to oceur in fresh-cut firuits is highlighted.
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INTRODUCTION

Stress is generally defined as any environmental
factor that 18 potentially unfavourable to living orgamsms
(Levitt, 1972) with the exception of decay (i.e., biotic
factors). Thus, quality losses in fresh-cut produce such as
fruits and vegetables can be directly or indirectly
attributable to a combination of abiotic stress and stress-
mduced senescence (Lester, 2003). In this context,
wounding 1s one of the major stresses experienced by
fresh-cut produce undergoing wvarious forms of
processing (e.g., slicing, dicing, chopping, trinming,
peeling, coring and/or shredding). Internal and external
factors that can affect the wound response include
species, cultivar, maturity, storage/processing
temperature, cutting protocols, CO, and O, levels and
water vapowr pressure (Brecht, 19935, Cantwell and
Suslow, 2002). Increasing interest has recently been
shown in prepacked/precut fresh fiuit and vegetables
because of the advantages offered by those commodities
to consumers;, e.g., convenience, freshness and low
calonfic content.

However, as a result of the active metabolism of the
plant tissues caused by wounding damage and the
exposure of cut surfaces to external factors, the produce
changes from having a relative stability with a shelf-life of

several weeks or months to a perishable product with a
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very short shelf-life (Lanciotti et al, 1999). During
climacteric fruit ripening, the burst of autocatalytic
ethylene (C,H,) co-ordinates and accelerates the ripening
process (Alexander and Grierson, 2002). Delaymg frut
ripening by reducing C,H, biosynthesis has been a
major goal of postharvest physiologists for example via
C,H,-suppressed transgenic plants (Hamilton et al., 1990;
Oeller et al., 1991; Picton et al., 1993).

Ripening of fruits and senescence of flowers can also
be controlled using 1-methyl cyclopropene (1-MCP) (Reid
and Staby, 2008). However, the transgenic approach is
time-consuming, financially-demanding and requires
extensive studies and the use of 1-MCP may actually
inhibit the occurrence of desirable changes in the produce
that are induced by C,H,.

Fresh-cut processing and packaging protocols result
in stress for fruit and vegetable tissues and much of this
has been described as producing a shorter shelf-life
for fresh-cut wversus intact fruits and vegetables
(MarAa Gil et al., 2006). Fresh-cut fruits and vegetables
exhibit increased respiration rates and wound-induced
C,H, production and increase the surface area per unit
volume, thus exacerbating water loss (Toivonen and
DeEll, 2002). Thus, development of non-hazardous and
efficient procedures for preventing C;H, accumulation or
wnhuibiting C,H, action on fresh-cut fruits would be of
considerable commercial interest.
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For >2 decades, due to its diverse biological activities
and general ubiquity, Nitric Oxide (NO) has been
extensively studied m ammal and plant research
(Delledonne et al., 1998; Durner et al., 1998, Furchgott
and Zawadzecy, 1980; Ignarro et al., 1987; Koshland, 1992;
Palmer et al., 1987, Wang et al., 2004; Aboul-Soud et al.,
2009). NO 15 a bicactive molecule implicated in vegetative
stress and senescence of horticultural products (Leshem
and Haramaty, 1996).

Earlier, it has been reported that exogenous
application of NO, either by direct fumigation or via NO-
releasing chemicals, sigmficantly extends shelf and post-
harvest lives of intact vegetables and climacteric and
non-climacteric  horticultural products (Leshem and
Haramaty, 1996; Leshem and Wills, 1998; Leshem et al.,
1998; Wills et al., 2000; Sozz et al., 2003; Soegiarto and
Wills, 2004; Zhu and Zhou, 2007, Zhu et al, 2006).
Moreover, the emission of NO was negatively correlated
with C,H, output during the process of maturation and
senescence of intact whole climacteric and non-climacteric
fruits (Leshem and Pinchasov, 2000). However, detailed
knowledge of the effects of NO treatment on freshly-cut
fruits 1s seriously lacking. Hence, the objective of thus
study was to mvestigate the effect of exogenous NO on
the production of stress C,H, from intact and fresh-cut
tomato fruits via a non-invasive detection using Laser
Photoacoustic Spectroscopy (LPAS).

The obtained results are discussed in the hght of
possible mechanisms of NO interference with C,H,
biosynthesis. Moreover, the potential utilization of NO in
controlling stress-induced and undesirable biochemical

changes that are known to occur m fresh-cut fruits is
highlighted.

MATERIALS AND METHODS

Plant growth: Experiments were performed using a near
isogenic line of diploid Solanum lycopersicon Mill. cv.
Ailsa Craig (AC™) plants that have been grown at Sutton
Bomngton, Leics., UK for over 20 years. All fruits utilised
for experiments were grown in Sutton Bonington (Leic.,
UK) greenhouse facility in December 2003. Basically,
plants were grown, mamtained and flowers were
tagged at anthesis as earlier described (Aboul-Soud and
El-Shemy, 2009).

Fruits at Mature Green (MG) stage were detached
from the plants with approximately 5 cm of pedicle and
subsequently put in a well acrated box to avoid stressing
the fruits. The fruits were air-shipped from Nottingham to
Nijmegen, the Netherlands in a <8 h duration from
dispatch to arrival. Measurements were carried out within
hours of arrival.
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Fruit treatments: Tomato fruits were initially selected for
uniformity of size and freedom from defects, infection and
mechamcal damage. Mature Green (MG) AC™ fruits were
all freshly cut for the wounding studies.

All samples were manually processed using
disinfected stainless steel knives and plastic cutting
boards. MG AC™ fruits were systematically cut in slices
10-12 mm thick. Subsequently, the resulting slices were
then cut into 4 triangular pieces. For fruit treatment with
NO, calibrated cylinder containing NO
concentration of 1 ppm, purchased from NMI (National
Metrological Institute, the Netherlands) was utilised.
Thus, tomato fruits were fumigated overnight with NO gas
at a physiological concentration of 200 part per billion
volume (ppbv). This was accomplished by flushing fruit
samples with a mixture of NO from the calibrated cylinder
(NMI, the Netherlands) and ozone-free air at a total flow
rate of 2 1. h™". Tn order to reach 200 ppbv NO, a 5 time
dilution of the NO from the calibrated cylinder was
attained by mixing 0.4 L h™' NO flow with 1.6 L h™" ozone-
free air.

a at a

Real-time monitoring of C,H, emission with LPAS: C,[,
production was monitored m real time via LPAS,
employing a sensitive laser-based C,H, detector in
combination with a gas flow through system, essentially
as described by Cristescu ef al. (2002). A schematic
diagram of the setup 1s shown m Fig. 1. Briefly, the system
consists of a line-tunable CO, laser that emits 9-11 um
infrared light into a Photoacoustic Absorption Cell (PAC)
where C,H, 1s detected.

The C,H, gas mixtures are very sensitively measured
by the laser-based C,H, detector at tens of pptv levels
(parts per trillion volume = 1: 10"} due to the distinct
fingerprint-like spectum of CH, in the CO, laser
wavelength range (Brewer et al., 1982). Tomato fruits are
placed into closed glass cuvettes and continuously
flushed with carrier gas at constant flow of 2 . h™" A
system of electric valves allowed three cuvettes with
biological samples to be measured alternatively (Fig. 1a).
Each cuvette was measured for about 15 min. When not
being measured, the gas flow through the cuvette was
maimntained but was vented mto the (Fig. 1b). The
obtained C,H, levels comresponding to an empty cuvette
were subtracted.

Ethylene emission from tomato fruits was related to
the production rate by multiplying the measured value
with the flow rate (2 L h™") and divided by the fresh
weight; the results were expressed in pmol h™ per g fresh
weight (fwt). Each experiment was repeated at least three
times, each of which produced essentially similar results.
The data shown i Fig. 2 and 3 are of a typical experiment.
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Fig. 2. Ethylene production m intact MG tomato fruits

pre-treated with NO compared to untreated intact
control, as detected using LPAS. NO-treated
fruits were fumigated with 200 pbbv according to
materials and methods. Each sample cuvette was
measured for approximately 15 min. This figure
shows averaged C,H, emissions of typical data
obtained over a 3 h monitoring period. The
experiment was repeated twice with similar results
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Fig. 3: Ethylene production by fresh-cut MG tomato

fruits pre-treated with NO to
untreated fresh-cut control, as detected using
LPAS. NO-treated fruits were fumigated with
200 pbbv according to materials and methods.
MG fruits were manually processed using
disinfected stamless steel kmves and were
systematically cut in slices 10-12 mm thick.
Subsequently, resulting slices were then cut into

4 triangular pieces
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RESULTS AND DISCUSSION

NO emissions were negatively linked to C,H,
production in mtact climacteric and non-climacteric fruits
(Leshem and Pinchasov, 2000). This raised the prospect
that NO could have a role in the postharvest behaviour of
horticultural produce, as exogenous NO fumigation has
been shown to extend postharvest shelf-life and storage
of intact fruits (Leshem and Wills, 1998; Leshem et al.,
1998; Wills et al, 2000). However, a direct causal
relationship between NO and C,H, has not been
mvestigated earlier, whether in intact or fresh-cut fruats.
In this research, The researchers examined the direct
effect of short-term application of NO gas, at low
concentration on levels of C H, production in tomato fruit.
For this purpose, a direct-trace gas, non-invasive and
online sampling technique based on LPAS was employed.
Thus, C,H, emissions from MG fruats which had been pre-
treated with NO gas at a concentration of 200 ppbv were
monitored i real-time via LPAS. Ethylene production from
intact tomato fruits at three different developmental
stages (namely: Mature Green (MG), Breaker (B) and B+5)
was monitored.

Typically, C,H, levels of 16.934+2.72,151.01+18.33 and
718.19442.16 pmol h™ g fwt™ were produced by MG, B
and B+5 fruits, respectively over 13 h period. These
values fall within the expected normal C,H, evolution
range for each respective developmental stage. Strikingly,
pre-treatment of intact MG tomato fruits with 200 pbbv
NO gas resulted in a significant steady reduction in C,H,
production level (Fig. 2). Specifically, an overall average
reduction of 33.33% m C,H, production level was
observed when intact MG tomato fruits were fumigated
with NO gas (6.04£0.44 pmol h™ g fwt™), as compared
to non-treated MG centrol (9.040.18 pmol h™ g fwt™)
(Fig. 2). It 13 noteworthy that the reduction in C,H,
emission becomes greater the longer the experiment
continues being 6.61 and 5.63 pmol h™' g fwt™" at 0.77
and 2.86 h, respectively (Fig. 2).

In addition, to test the effect of NO on wound
induced C,H, levels, fresh-cut MG tomato fruits were
employed. Interestingly, NO gas fumigation caused
approximately 60% reduction in peak C.H, levels in fresh-
cut MG tomato fruits as compared to untreated fresh-cut
control (Fig. 3). Taken together, these results clearly
indicate that NO pre-treatment negatively impacts on C,H,
production levels in both intact and fresh-cut tomato
fruits. A possible explanation of tlis observed
phenomenon is that NO negatively interferes with the
enzymatic activity of one or more key enzymes in the C,H,
biosynthetic pathway, thereby influencing maturation and
senescence of plant tissue. Hence, it 13 suggested that
both gases act antagonistically.
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The chemical natre of NO results in transition
metals (e.g., Fe, Cu, 7Zn) and proteins containing thiol
groups being important targets for this molecule
(Wendeherme et al., 2001). Thus, it has earlier reported
that NO mlubats the activity of aconitase (Fe-3) and haem-
containing enzymes (eg., Catalase and peroxidase)
resulting in the modulation of reactive oxygen species
generation and detoxification (Clarke et al., 2000; Ferrer
and Barcelo, 1999). In strawberry, a non-climacteric fiuit,
with low C,H, production rate after harvest, it has been
reported that NO could decrease C,H, production through
wnhibition of 1-Aminocyclopropane-1-Carboxylic acid
(ACC) synthase activity but not ACC oxidase; thus,
reducing ACC content (Zhu and Zhou, 2007). Thus, NO
treatment was hypothesized to have no effect on the
conversion of ACC to ethylene; it only prevented ACC
synthesis through ACS deactivation (Zhu and Zhou,
2007). Moreover, another report showed that NO directly
acts by down-regulating C,H, synthesis through S-
nitrosylation of Methionine Adenosyltransferase (MAT1)
in Arabidopsis plants (Lindermayr et al., 2006).

The attachment of NO leads to the inhibition of
MATI activity and results in the reduction of the pool of
the C.H, precursor S-Adenosylmethionine (SAM)
(Lindermayr et al., 2006). In this research, it was shown
for the first time that exogenous NO negatively modulates
C,H, production in fresh-cut MG tomato fruits (Fig. 3).

In this context, it has been previously reported that
NO donors strongly inhibit the gene expression of wound
signalling-associated genes (e.g., proteinase mnhibitor) in
young excised tomato plants (Orozco-Cardenas and Ryan,
2002). Hence, it 13 possible that NO can potentially be
used 1n controllng stress-induced and undesirable
biochemical changes that are known to occur m fresh-cut
tissues, including fruits. Taken together, the key to
achieving improved shelf-life, quality and nutritional
status 1 fresh-cut products 1s to understand the
mechanism of wound-induced change in the tissue
physiology and metabolism. Once the mechamsm of the
wound-induced change 1s understood, then approaches
to delay, mhibit or ameliorate the stress can be reliably
developed.

Further studies are needed to determine the protective
effect of NO on fruit nutritional value, quality parameters
and on the synthesis of undesirable compounds with
toxic or allergenic properties.
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