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Abstract: The mechanism underlying the increased resistance of the red blood cell to hemolytic influences,
occurring during hypoxic hypoxia was mvestigated in male albino rats. Hypoxia was induced by “raising” the
animals to an imagmary height of 5,000 metres above sea level through 10 days. Metabolic studies were
conducted using the 4th and 5th cell populations obtained by fractionation mn sucrose solution concentration
gradient and situated at the 18% and 14% sucrose concentration zones. The activities of hexokinase, (HK)
lactate dehydrogenase (LDH) and glucose-6- phosphate dehydrogenase (G-6PD), and the concentrations of
glucose and lactic acid were investigated. Hypoxia caused mcreased metabolic flux through glycolysis in the
cell fractions as observed in elevated activities of HK and LDH, decrease in glucose level (p<0.1), and mncreased
concentration of lactic acid in the 3rd and 5th days of adaptation (p<0.1). The activity of G-6PD was also

increased in the periods.
metabolites was observed in the 10th day of hypoxia.

A tendency towards normalization of enzyme activities and concentration of
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INTRODUCTION

Oxygen 1s a very important biogemc element in
nature. It is the terminal acceptor of reducing equivalents
during the mitochondrial oxidation of metabolic substrates
mn orgamsms. Concomitant with the process is the
synthesis of ATP, which serves as uruversal fuel for all
forms of biclogical work. The foregomng underscores the
importance of adequate and continuous supply of the gas
to tissues of the organism.

The erythrocytes form the cytological basis of the
system  which regulates and maintains oxygen
homeostasis in the organism. The erythrocytes perform
this function not as a single cellular population but as a
heterogeneous population of erythroid cell fractions
(Cohen et al, 1976; Ekpo, 1999). The gas transport
function of the peripheral blood depends on the
sensitivity of the erythrocyte fractions to hemolytic
influences.

Interest in hypoxia as a common life phenomenon
and basis of pathologies dates back tothe first half of
the 20th century (Merino, 1950; Pugh, 1957). There 1s,
however, renewed interest in the phenomenon nowadays,
what with many mechanisms of the compensatory

reactions of the organism still obscure and with increasing
humean activities in space (Roderick, 2004; Vachiano et af.,
2004; Hackwort et al., 2005). The present research
highlights the adaptive significance of changes in the
fragility of the major erythroid cell populations of the
peripheral blood following the exposure of rats to altitude
hypoxia, simulated in the barocamera.

MATERIALS AND METHODS

Male albmo rats of body weights between 160 and
200 g were used in the experiment. The animals were
divided into two groups, the control and the experimental
groups. While the control group ammals were acclimatized
under normoxic conditicns of the animal house, those of
the experimental group were subjected to altitude hypoxia
simulated in a barocamera or hypoxic cage. The hypoxic
cage has 3 key components, namely, a special vacuum
pump which sucks out air from the cage chamber; an
adjustment value with which air pressure within the cage
is regulated; and a barometer specially calibrated to
register the pressure in the cage as “height” in metres
above sea level. Experimental ammals were placed in the
cage chamber, exposed to an imaginary height of 5000 m
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above sea level and maintained there for 3 h each day.
They were sacrificed and blood samples obtained from
them by cardiac puncture after the 1st, 3rd, 5th and 10th
days of hypoxic exposure, with heparin serving as
anticoagulant.

All operations were conducted m the cold (O°C+4°C).
Plasma-free Red Blood Cell (RBC) suspensions were
obtained by washing fresh heparinized blood.

Samples from ammals thrice with physiological saline
(0.85% NaCl), each washing operation being accompanied
by centrifugation at 2.500 rev min~' for 5 min. RBC
suspensions were separated into populations using the
sucrose solution concentration gradient techmque
(S1zova et al., 1980). Fragility test was conducted with cell
suspensions using the erythrogramme method, consisting
of time monitoring of the kinetics of HCl-induced
erythrocyte hemolysis (using 0.001N HCI) according to
Gitelzon and Terskov (1969), which 1s also described
elsewhere (Ekpo, 2005). Fragility test was conducted with
the un-fractionated blood and with the two main erythroid
cell populations which occupy the 18 and 14% sucrose
concentration zones. Results obtained were statistically
analysed and level of significance evaluated using the
student’s t-test.

RESULTS

Table 1 contains mformation on the influence of
barocamera hypoxia on the fractional composition of
erythroid cells of the peripheral blood of rat. Hypoxia
caused significant decreases (p<<0.01) i the populations
of erythroid cells of the 1st and 3rd fractions occupying
the 30 and 22% sucrose concentration zones, especially
in the 3rd and 5th days of the experiment. The 4th, 5th and
7th cell fractions populating the 18, 14 and 6% sucrose
concentration zones respectively, were, on the contrary,
significantly increased (p<0.01) by the action of hypoxia.
A tendency towards normalization of the fractional
composition of the blood was observed in the 10th day of
hypoxia.

The kinetics of acid-induced hemolysis of erythroid
cells of the blood 1s presented as hemolytic curves, or
erythrogrammes, in Fig. 1 (un-fractionated blood); Fig. 2
(4th fraction) and Fig. 3 (5th fraction). Hypoxia caused
mncrease m height of the erythrogramme maximum for the
un-fractionated blood in the 3rd day, with a complete
rightward displacement of the hemolytic curve maximum
to a new, 4.5 min position in the 5th day relative to
control. Tn the 10th day however, the hemolytic curve
maximnum for the un-fractionated blood was returned to
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Fig. 1: Effect of hypoxia on the hemolytic process of rat
RBC (unfractionated blood)

—e— Conirol
—»— 3rd day
—i— 5thday
—¥— 10th day

v

T T I3 ‘Il T 1
Time {min)

Fig. 2: Effect of hypoxia on the hemolytic process of rat
RBC (4th cell fraction)

the 3.5 min position of the control. With respect to the
4th and 5th fractions, hypoxia in the 3rd and 5th days,
caused mncreases m heights of the erythrogramme maxima,
however without shift from the 4.5 min control position.
Again a tendency towards returning the erythrogramme
maxima to the control heights was observed for the said
fractions n the 10th day of hypoxia.
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Fig. 3. Effect of hypoxia on the hemolytic process of rat
RBC (5th cell fraction)

DISCUSSION

Polycythaemia due to erythrocytes and reduced
volume of the plasma (Hurtado, 1964, Dudarev, 1979) 1s a
common feature of hypoxic states. Hypoxia-induced
erythrocytosis, depending upon the ethiology, can be
characterized by erythroblastosis, consequent upon the
mobilization of nucleated red cell precursors from the
bone marrow into the circulation, as the organism battles
to beef up the oxygen-carrying capacity of the blood
(Feodorov, 1977, Mashkin and Terskov, 1986).
Erythroblastic polycythaemia is linked to the action of
erythropoietin, the renal hormone which stimulates
erythropoiesis and which 1s released mto the blood
in response to reduction in oxygen tension in the tissues
(Lechermann and Jelkmann, 1985; Barkova, 1979).

Owr data show that experimental hypoxia inflicted
changes in the populations of erythroid cells of the
peripheral blood of the rat (Table 1), particularly in the 3rd
and 5th days which constitute the critical periods of
adaptation. A tendency towards normalization of the
fractional composition of the blood in the 10th day
was observed. According to cytological analysis by
Cohen et al. (1976), while the old erythrocytes populate
the located towards the 30%
concentration zone (1.e., the 1st and 2nd fractions), the
young and immature erythrocytes are located towards the
6% concentration zone (i.e., the 6th and 7th fractions).
Between these fractions are situated the functionally

fractions sucrose
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active cell populations, namely the 3rd, 4th and 5th
fractions. Of these three, we are focusing on the 4th and
5th cell populations because they carry most of the
workload of the blood both in the control, normoxic
condition (4486 + 10.73 = 55.69%) and in the critical
periods of adaptation (52.29 + 20.61 = 73.90% for the 3rd
the 5th day). The decreases m the populations of cells of
the 1st, 2nd and 3rd fractions recorded in the critical
periods can be the consequence of accelerated ageing
(Vinogradov et al., 1962) and elimination of old RBC by
the reticuloen-dothelial system (Fornaim e al., 1985
Semenov, 1963). Accelerated cell ageing coupled with
increased erythropoiesis could also be responsible for
the increases recorded for the 4th and 5th cell populations
1n the 3rd and 5th days. Erythrocytosis of the 4th and 5th
cell populations in the critical periods could also be
explained in terms of reduced fragility of these cells to
hemolysis.

Our data on the hemolytic process of the
unfractionated RBC show that hypoxia caused increase in
height of the hemolytic curve maximum in the 3rd day with
a rightward displacement of the meaximum to anew 4.5 min
position, relative to control (Fig. 1). Increase in height of
the hemolytic curve and displacement of the maximum to
the right relative to control, both signify increase in RBC
resistance to hemolysis. In the 10th day, however, the
hemolytic curve maximum returned to the 3.5 min position
of the control increase of the RBC resistance to hemolysis
has been reported for whole blood during hypoxia
(Matzimn, 1979). However, explained the
phenomenon as the consequence of liberation of
immature red blood cells into the circulation. Based on our
data, however, this effect cannot be explained in terms of
the presence of immature cells because the populations of
such cells (6th and 7th fractions) were too small to make
such an impact. Hemolytic studies with the isolated 4
thand 5th cell populations showed that hypoxia also
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elicited increase in the RBC resistance to hemolysis in the
critical periods as evident in the mcreased heights of the
hemolytic curve maxima, relative to control (Fig. 2 and 3).
Tt is an effect intrinsically associated with erythroid cells
of these populations and which needs to be elucidated at
the metabolic level. It probably explams why the 4th and
5th cell fractions remained high in the critical periods of
adaptation. Thus, during hypoxic hypoxia as simulated in
the barocamera, mternal compensatory mechamisms of the
orgamism, in addition to other responses, beef up the
oxygen-carrying capacity of the blood by increasing the
resistance of the main circulating erythrocytes to
hemolysis.
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Table 1: Influence of barocamera hypoxia on erythroid cell populations of rat peripheral blood (n = 5)

Sucrose Experimental condition

Fraction concentration
No. zone (%) Control 1st day 3rd day 5th day 10th day
1 30 3.7440.13 1.34+0.23% 1.99+£0.13* 0.914+0.13# 2.06+0,14*
2 26 3.62+0.91 4.03+=0.85 4.20+0.91 3.47+0.23 3.86+0.15
3 22 28.33+2.35 20.49+2.26* 12.03+2.51* 10.67+1.13* 27.99+2.80
4 18 44.86+2.29 53.66+2.31% 52,2942 36* 5TA0316% 43.41+£3.15
5 14 10.73+1.34 11.77+1.56 20.61+3.66% 18.96+1.23% 14.70+1.56*
6 10 4.49+0,21 3.23+0.24 2.55+0.24* 3.21+0.31 3.50+0.23
7 [ 4.23+0.11 5.48+0.32 6.33+1.27* 5.37+1.24 4.48+0.29
*Data significant at p<0.010
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