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Using an Easy Calculable Complexity Measure to Introduce Complexity
in the Artificial Neuron Model
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Abstract: This study introduces an approach to simulate neural complexity by changing the McCulloch and
Pitts neuron model. The new approach was tested by comparing the classification performance of a multilayer
perceptron with complexity measurement capability to a traditional multilayer perceptron with MceCulloch and
Pitts neuron model The results showed that the multilayer perceptron implemented with the complexity
measurement approach achieved best classification performance (worst score of 94%) when compared with
multilayer perceptron without the complexity approach (best score of 51%) in task of classifier large time series
generated by a logistic map with different generator parameter.
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INTRODUCTION

Neural dynamics may be described at several levels
of abstraction (Hausser et af., 2000). On a microscopic
level, ionic flow changes the axon-hillock membrane
potential by modifying the membrane’s conductance.
Conductance change involves selectively opening and
closing molecular channels. Sodium (Na®) and potassium
(K" ions flow across the membrane through these
molecular chamnels. The sodium and potassium ions
change their conductance (their ability to flow) as they
flow across the membrane by altering these molecular
channels in complex ways. This complex dynamic dictates
how the neuron field will work (Magee et al, 1998,
Rhodes, 1999). Mathematical models use a higher level of
abstraction and consider the neuron as a homogeneous
unit, which generates spikes if the total excitation is
sufficiently large (Colli, 1994). Models based in this idea
are the so-called integrate-and-fire models (Tiong et al.,
2000; Burkitt and Clark, 1999).

Computational models of the neuron are inspirited in
the integrate-and-fire models (Polsky et al., 2004). The
most common of these computational models is the
MecCulloch and Pitts (1943) model. This model computes
the weighted sum of its inputs and produces an output
based on the activation function. Therefore, the
complexity of neuron dynamics shows that the McCulloch
and Pitts model, despite its sunplicity, does not have
biological evidence. The integrate-and-fire model is not
the only possibility to explain the neuron reaction to the
inputs (Polsky et al., 2004; Chapline, 1997).

A larger variety of techniques and models have been
developed in order to understand or predict the neural
complexity. These techniques focus on the complexity
topology (Lucia et al., 2005) and on the measurement of
the information complexity that flow through the neural
network (Kon and Plaskota, 2000).

This research suggests a modified computational
neuron model by modeling the complexity of newron
dynamics using complexity measures acting on all inputs
arising to the neuron. This moedel differs from the classical
McCulloch and Pitts model by computing the complexity
of the all weighted mputs to the neuron, 1.e., the model
computes the weighted input complexity and produces an
output based on the activation function. The complexity
was measured using the method developed by Lempel
and Ziv (1976). For testing the new computational model,
a multi-layer perceptron (named complex multi-layer
perceptron) was implemented using this new neuron
configuration. The Complex Multi-Layer Perceptron
(CMLP) was compared with a Convectional Multi-Layer
Perceptron (MLP) to classify a standard benchmark
complex time series produced by a logistic map with
different parameters. The only difference between the
CMLP and MLP implemented was the neuron model.

MATERIALS AND METHODS

Complexity measurement algorithm: The calculation of
complexity was based on the work of Lempel and Ziv
(1976), where the measure c(n) 15 introduced. The
complexity ¢(n) measures the number of distinct patterns
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that must be copied to reproduce a given string. In
practical application, ¢(r) 1s independent of the sequence
length and normalized by a random string that is
meamngful (Zhang and Roy, 2001). If the length of the
sequence is n and the number of different symbols is s,
the upper bound of ¢(n) 1s given by:
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In practical applications b(n) is obtained for a random
string of length n with complexity given by
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where & denotes the number of different characters m the
string and h denotes the normalized source entropy given
by:
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where p,is the probability for each state ¢. The normalized
complexity measure C{nn) 1s given by:
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For a string S composed by symbol sequences
$8;...8, 1.8, S = ( 83,...8,), the algorithm used for
calculation of ¢(n) is based on the how S can be
reconstructed  using a given symbol  sequence
(Szczepanski et af., 2003). It 13 assumed that this symbol
sequence has been reconstructed up to the symbol s,
and that s_has been newly mserted, 1.e., 5 =5;5,...5, will
denote the symbol sequence up to s, where the dot
indicates that s, 18 newly inserted. The question i1s how
the rest of 5 can be reconstructed by simple copying of
the previous sequence or whether one has to insert new
digits. The algorithm to solve this problem is to take
Q-=s,, and check whether this term is contained in the
vocabulary of the symbol sequence S so that Q can
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simply be obtained by copying a symbol of 8. This is
equivalent to finding whether Q 15 contamned in the
symbol vocabulary v(SQn) of SQn where SQn denotes
the sequence which 15 composed of Sand Q and T means
that the last digit has to be deleted, i.e.,
Squ =15 ()
To exemplify this, consider that s,, can indeed be
copied from the vocabulary of s. Then, the algorithm asks
whether Q = s.,8,, i8 contained in the sequence
vocabulary of SQm and so on until Q becomes so large
that it can no longer be obtained by copying a symbol
from +(SQm) and one has to msert a new digit. The
mumber c(n) of production steps to create a sequence
symbol, 1.e., the number of newly inserted digits (plus one
if the last copy step is not followed by insertion of a
digit), was used as a measure of the complexity of a given
sequence symbol.
For example, consider the symbol sequence 0010. The
following steps can determine the complexity ¢(n) for this
sequence.

Step 1: The first digit always has to be mserted 0.

Step 2: 3=0, Q=0, SQ=00, SQn=0, Q is in v(SQm) 0.0
Step 3: 5=0, =01, SQ001, SQm=00, Q sn't in v{(SQW)
~0.01.

Step 4 5=001, Q=0, SQ=0010, SQn=001, Q 18 In
v(SQm) 0.01.0

For this symbol sequence c¢(n)=3 i.e., the total number
of parts of the symbol sequence that are separated by
dots. The algorithm to calculate c(n) is:
Begin
Step O0: en--1,
Step1l: L-1;
Step 2: 1-0;
Step 3: K-1,
Step 4 Kmax-—1;
Step 5. 1f S(I+k)=S(L+k) do
Step 5.1: — if (k=Kmax) do
Step 5.1.1: —Kmax - k;
Step 53.1.2: else do T ~ T+1;
Step 5.2: 1f (I=L) do
Step 5.2.1: cn - entl;
Step 5.2.2: L - L + Kmax;
Step 5.2.3: if (L+1)>n the Stop
Step 5.2.3.1: else go to Step 2;
Step3.2.4:elsek - 1; goto Step 5,
End.

Figure 1 illustrates the complexity neuron diagram
and Fig. 2 shows the directed graph representation
of the complexity neuron. Figure 1 illustrates the neuron
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Fig. 1: Diagram representing the Maculloch’s neuron
model with a complexity measurement block
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Fig. 2: Graph representation of neuron model with
complexity measurement

structure where the main difference to the MeCulloch and
Pitts model 13 the complexity measurement block.

Figure 2 shows details of the actions performed in
each graph node. The mputs nodes propagate our signal
welghted by w's operators to the symbol sequence
generator node. The symbol sequence generator node
propagates our signal to the output node by means of the
action of complexity measurements operator C and finally
the neuron output is the neuron function operator f(.)
acting in the output node signal.

In this model all the neuron mputs was treated like a
symbol sequence weight dependent. This sequence 1s
transformed mto a sequence contaimng zeros and ones.
In order to reduce the x;w, to two values, it is took s(1) = 1
if x;w, was above the spatial average

[

and s(1) = O otherwise. For this symbol sequence a
complexity measurement c(n) was calculated mside the
neuron structure. For one neuron the complexity
measurement is used as follows:
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Step 1: Transform all neuron mputs mto symbol sequence
Step 2: Calculate the complexity of the neuron

Step 2.1: Calculate c(n)

Step 2.2: Calculate h and b(n)

Step 2.3: Calculate C(n) = c(n)/b(r)
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Step3: Calculate the neuron output applying the
activation function as follows

Neuron output = F(complexity of neuron C(n))
Stepd-propagate the neuron output to other neurons.

ANN experiments: In this researchwork two ANN were
implemented. The Multi Layer Perceptron (MLP) trained
with the emror back propagation algorithm using a
conventional neuron model and the Complex multi layer
perceptron CMLP also tramned with error back propagation
algorithm, but using a complex neuron model. The sigmoid
was used as the neuron function.

To test the CMLP and to compare to the traditional
MLP, standard benchmark datasets of time series
generated by a logistic map (Kaspar and Schuster, 1987)
with different control parameters r were used to train the
network. The ANN task was to associate time series with
the control parameter r. The tune series was generated by
the following equation:

(8)

X~ D(1(17X1) X € [0:1]

Different control parameters r were used and the
CMLP and MLP task was to learn the dependence of time
series with the r parameter. The time series length
generated was 300 points long and for each time series,
a same initial condition x, (i = 0) was used. So, the MLP
and CMLP were implemented with 300 input neurons, 300
hidden neurons and one output neuron. The r-values
used were over the imterval 3 < r <3.5 that is periodic and
not caotic (Faigenbaum point) and over the interval
3.5<r<4 where r = 4 represents the extreme case of chaos
for the logistic map. Since the amplitude of the logistic
series in driven indirectly by r value the time series
generated were normalized in respect of amplitude before
making the comparisons. The total data set used in
traimng was 100 time series for each r regions.

RESULTS AND DISCUSSION

Figure 3a, b and ¢ show the time series forr = 3
(periodic range ), 1 = 3.5 (quasi-periodic) and r =4 (extreme
chaos) respectively.

Figure 4 shows the network training error for MLP for
time series generated for r = 4 with the following sigmoid
function parameters:

F(x)= —C with A=1, B=landC=1 (%)

Figure 5 shows the network traimng error for CMLP
for r = 4 with the sigmoid function in Eq. 5.
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Fig. 3: Three different time series generated by logistic
map. Figures a, b and ¢ was generated by r= 3, 3.5
and 4 respectively

1.0
0.8
0.61
E
s3]
0.4 \
0.2
0.0
L} T L} L T L L] T T T 1
-200 0 200 400 600 800 1000
Interactions

Fig. 4: Training error of MLP using MacChuloch’s
neuron model
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Fig. 5: Training error of CMLP
Table 1 shows the classification score for the CMLP

and Table 2 shows the classification score for MLP both
in different » intervals.
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Table 1: Classification score for CMLP
r

Score (%)

3.0 94

3.5 93

4 97
Table 2: Classification scores for MLP

r Score (%)
3.0 47

3.5 46

4 52

Comparing Fig. 4 with Fig. 5 it is evident that the error
backpropagation algorithm implemented in the CMLP
achieved a minor error values in the training stage than
the implemented in the MLP for time series chaotic. This
result shows that the neuron complexity model improved
the learning process in the network. Table 1 shows the
ANN classification rates for each time series generated
by respective r parameters. The scores related in
Table 1 and 2 confirm the results showed in Fig. 4 and 5,
i.e., when the time series complexity increase the
backpropagation algorithm implemented with complexity
measurement improve ANN performance. Many authors
have discussed a complexity theory for neural networks
under issues related to information complexity of neural
nets (Girosi and Poggio, 1990) or under issues from a
topological approach to neural complexity (Spoms ef al.,
2000). These 1ssues concern the global network structure
and operation. These works do not focus on the
complexity of the simple neuron. By modeling the neuron
activity as complex units the results in this paper show
that the global network formed with these neurons are
able to learn complex time series generated by a logistic
map. The biological plausibility of this new neuron model
was related to investigations of Polsky ef al. (2004) that
showed the importance of non-linear and complex
behavior of pyramidal neurons, suggesting that the
strong spatial compartmentalization effect observed in
these neurons is incompatible with a global summation
rule. Another characteristic of the ANN with complexity
neurons is the ability to deal with large time series
implying in large number of input neurons. Future works
will explore the other features in this new neuron model;
for example, the effect of hidden neuron numbers into the
ANN performance and using hybrid MLP with complex
neurons and McCulloch and Pitts neurons.

CONCLUSION

The main objective of this research was to test a
complexity neuron model based on the Lempel and Ziv
complexity measurement in an MLP network trained with
the error back propagation and to compare the ANN
performance with the MLP using the McCulloch and
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Pitts neuron model. All results show that the MLP with Kaspar, J. and H.G. Schuster, 1987. Easily calculable

complexity neurons is able to deal with large time series
generated by complex systems like a logistic map. The
results show also that the MLP with the McCulloch and
Pitts neuron model failed in this same task.
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