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Abstract: Speech segmentation is the process of breaking
speech signal into distinct acoustic blocks that could be
words, syllabus or phonemes. Phonetic segmentation is
about finding the exact boundaries for the different
phonemes that composes a specific speech signal.
Phonetic segmentation is crucial for many applications
basically speech recognition ASR and speech to text
systems STT as ASR needs phonetically transcribed
training corpus, STT needs phoneme database. Phonetic
segmentation techniques are divided into two major
categories: Text-Dependent (TD) and Text-Independent
(TI). In the text-dependent segmentation techniques, the
phonetic annotation of the speech signal is already known
and we only need to find the boundaries of each phoneme
segment. In this study, we present a thorough survey of
the different algorithm and techniques proposed so far for
solving the problem of text-dependent phonetic
segmentation.

INTRODUCTION

The phonetic segmentation technique is about
identifying the starting and ending boundaries of each
phoneme segment in continuous speech. It is an important
technique in many areas of speech processing[1, 2]. It can
benefit segment-based speech recognition systems[2]

which integrate the dynamics of speech better than
frame-based ones. Phoneme segmentation is also crucial
for creating phoneme databases used in text to speech
(TTS) systems[3-5], to transcribe speech corpus used in
training HMMs (Hidden Markov Models) in ASR
systems. Phonetic segmentation is also used in building a
Query-by-Example (QbyE) Spoken Term Detection
(STD) application which is relatively a new application
drawing increasing attention in recent years[6]. Knowledge
of phoneme boundaries is also necessary in some cases of

health-related research on human speech processing[6]

such as diagnostic marker for Childhood Apraxia of
Speech (CAS) and Alzheimer’s disease[7]. Phonetic
segmentation and annotation can be done either
automatically or manually by expert phoneticians[1]. The
main difficulty of this task is its subjectivity because of
the lack of distinct physiological or acoustic events that
signal a phoneme boundary in some cases. In continuous
speech, phoneme boundaries are sometimes difficult to
locate due to glottalization extremely reduced vowels, or
gradual decrease in energy before a pause[7]. As a result,
there is no “correct” answer to the phoneme segmentation
problem. Instead a measure of the agreement between two
alignments is take place such as the agreement between
two humans, or the agreement between human and
machine[7]. Though manual segmentation is the most
adequate[8]  way  for  phonetic  transcription  but it suffers 
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from being very tedious and time consuming task (it is
reported  that  manual  alignment  takes  between  11  and
30 sec per phoneme[7], especially in the case of large
speech corpora and spontaneous speech. In addition
manual segmentation suffers from labeler subjectivity and
may not be able to maintain labeling consistency[9]. These
difficulties stimulate the algorithms development of
automatic phonetic segmentation of continuous speech
waveforms. Automatic speech segmentation techniques
are divided into two major categories: Text-Dependent
(TD) and Text-Independent (TI) segmentation[10, 11]. Most
text dependent segmentation techniques (It also called
explicit because we know explicitly the phonetic
annotation a priori. Sometimes it is also called
linguistically constrained segmentation methods)are based
on HMM with forced alignment Viterbi algorithm[10, 12].
These methods suffer many shortages: To provide a good
performance, it needs accurate phoneme models that
incorporate pronunciation variants and other phonetic
phenomena like elision, dialectal variation, cross-word
assimilation and de-gemination. Hesitations, false-starts
and other dysfluencies which are very common in
spontaneous speech are other sources of problems[10]. The
corresponding text that matches the speech waveform is
not available in many cases including real-time
phoneme-based speech recognition, accent conversion
system, real-time translation system and computer aided
language learning system[13]. Imposing linguistic
constraints to the segmentation algorithms make these
algorithms restricted to the database used for training[11].
In the case of foreign or accented speech processing, there
can exist a large mismatch between utterances and native
acoustic models which degrades the performance of the
HMM-based segmentation[14]. All these issues can be
handled more efficiently by Text-Independent (TI)
segmentation methods (also called implicit), that do not
corporate any prior information about the corresponding
phonetic or word transcription of the speech waveform to
be segmented.

TI methods can be classified into three broad
categories: unsupervised techniques, Self-Supervised
Learning (SSL) techniques and supervised segmentation
techniques[15]. In supervised methods (also called
model-based) a training stage is needed to learn an
acoustic model that can help in discriminating borders
from non-borders segments. After learning a model, the
segmentation process is done through binary
classification. These techniques need manually segmented
dataset to train the model[16, 17]. The unsupervised methods
(also called blind, or model-free) overcome this problem
by trying to identify phoneme boundaries as spectral
changes   in   the   speech   signal,   directly   considering
the    speech   spectrum   coupled   with   several   spectral

Fig. 1: Classification of phonetic segmentation techniques

distortion and metric measures, without considering any 
modeling  stage[14,  10,  17].  In  Self  Supervised  Learning
(SSL) methods, the unlabeled input is used to define an
auxiliary task that can generate labeled pseudo training
data. This can then be used later to train the model using
supervised techniques[15]. Figure 1 depicts the
classification  of  different  phonetic  segmentation
systems.

In   this   research,   we   present   an   inclusive
survey of the text-dependent phonetic segmentation
techniques. 

TD SEGMENTATION ALGORITHMS
PERFORMANCE METRICS

Different metrics are used to evaluate the
segmentation algorithms performance. In the text
dependent phonetic segmentation techniques, there are
three metrics Accuracy, Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). The number of
annotated segments is exactly equal to that of the
manually  segmented  corresponding  signal,  thus,  we
only  compare  the  boundaries  of  the  manual
segmentation to the boundaries discovered by the
algorithm.

Boundaries that are deviated more than a specific
threshold (Most commonly the threshold is equal to 20
msec and accuracy for different thresholds is reported in
literature) are reported as errors and accordingly accuracy
is calculated as follows:

(1)
Correct boudaries

Accuracy = ×100%
Total actual boudaries

The Mean Absolute Error (MAE) is the average of
absolute deviation (in millisecond) between the
discovered boundaries and the manually marked ones.
This deviation measure can be reported in terms of Root
Mean Squared Error (RMSE).

Figure 2 summaries the metrics used in the
assessment of different reviewed TD segmentation
algorithms.
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Fig. 2: Different metrics used for evaluating TD phonetic
segmentation techniques

TEXT DEPENDENT (SUPERVISED) PHONETIC
SEGMENTATION TECHNIQUES

The most frequently used approach for text
dependent segmentation is based on HMM phone
modeling[2, 12, 18]. This approach is inspired from the
well-known structure of ASR systems. In this method
each speech waveform is initially spliced into a sequence
of overlapping frames and then feature extraction is
applied to each frame to produce feature vectors using a
specific speech parameterization technique. Afterwards,
a set of HMM phone models manually trained using
annotated speech waveforms is utilized to detect the
corresponding phoneme of each feature vectors. Finally,
phonetic boundaries are detected as a byproduct of the
phoneme recognition task. Each phone label sequence is
force-aligned against the corresponding feature vector
sequence and the phone model set, through the Viterbi
algorithm[8]. The block diagram of the HMM-based
phonetic segmentation system for the text dependent
(explicit) case is shown in Fig. 3[18].

Template matching using Dynamic Time Warping
(DTW) was also proposed for forced-alignment but it
gave inferior performance.

Reported results of the traditional phonetic
segmentation techniques (HMM-based, DWT) in TTS
application are still far from being satisfactory[19].
Segmentation accuracy needed for TTS applications are
higher than for ASR applications. Since, ASR systems
aim to find the correct annotation sequence of the speech
waveform and this does not demand an accurate
placement of phone boundaries as the case for TTS
systems[10]. That is why various studies are proposed to
enhance the phonetic segmentation accuracy of the
existing segmentation systems.

Recent studies for enhancing the segmentation
accuracy in text dependent techniques can be classified
into two groups based on: modifying the structure of
acoustic models and post-processing techniques which try
to refine the preliminary boundaries produced by an
existing segmentation system[20] as shown in Fig. 4.

Post-processing techniques: Post-processing techniques
are based on refining the initial segmentation results
through different procedures. The main idea behind these 

Fig. 3: HMM-based phonetic segmentation[18]

methods is inspired from the manual segmentation
process of human labelers. They first listen to the speech
signal to get a rough boundary (baseline segmentation
system), then examine the spectrogram or waveform in
more detail to identify the accurate boundary
(post-processing: boundary refinement). In literature,
different post-processing techniques have been proposed.
They can be categorized into four different groups:
statistical correction, fusion, predictive models and
hybrid.

Statistical correction: The main idea in this technique is
to calculate a statistical average of the error produced by
the segmentation system and trying to compensate this
error. Figure 5 depicts the block diagram of such
boundary statistical correction system[21].

Toledano et al.[12] proposed a new statistical
correction technique entitled Statistical Correction of
Context Dependent Boundary Marks (SCCDBM) for
handling the systematic errors produced by
context-dependent HMMs. This new technique
(SCCDBM) includes two steps: training phase and
boundary phase. In the training phase, the statistical
averages of the boundaries error are estimated. In the
boundary correction phase, the phone boundaries are
moved according to those estimated averages.
Experiments on Castilian Spanish corpora showed that the
proposed SCCDBM system achieves an accuracy of
91.18% in tolerance region of 20 msec indicating a
notable increase compared with the baseline context
independent and context dependent HMMs segmentation
whose accuracy were 82.70 and 79.41%, respectively. 

Toledano et al.[12] proposed a new statistical
correction technique entitled Statistical Correction of
Context Dependent Boundary Marks (SCCDBM) for
handling the systematic errors produced by
context-dependent HMMs. This new technique
(SCCDBM) includes two steps: training phase and
boundary phase. In the training phase, the statistical
averages of the boundaries error are estimated. In the
boundary correction phase, the phone boundaries are
moved according to those estimated averages.
Experiments on Castilian Spanish corpora showed that the
proposed SCCDBM system achieves an accuracy of
91.18% in tolerance region of 20 msec indicating a
notable increase compared with the baseline 
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Fig. 4: Different techniques for enhancing text dependent segmentation

Fig. 5: Simplified illustration of the statistical approach to speech segmentation with optional correction[21]

context independent and context dependent HMMs
segmentation whose accuracy were 82.70 and 79.41%,
respectively.

Matousek et al.[21] proposed a Boundary-Specific
Statistical correction (BSC) technique for enhancing the
segmentation results of the HMM based segmentation
system. The proposed technique comprises two passes. In
the first pass all boundaries in the training dataset are
corrected by shifting the boundary with respect to the
boundary-specific average deviation. In the second pass,
the corrected segmented dataset is used as the input for
the segmentation of test dataset. Experiments on Czech
corpus composed of 5000 hand-labeled sentences showed
that the proposed refinement method achieves an accuracy
of 96% in tolerance region of 20 msec.

Fusion: Fusion techniques are based on combining the
segmentation results of different Automatic Segmentation
Machines (ASMs) to produce final boundaries
time-marks. This is done through either selecting the most
appropriate boundary from segmentation results of the
different ASMs depending on the phonetic context[22] or
through  a  weighted  summation  of  segmentation
results[19].

Park and Kim[22] proposed a new approach to improve
the performance of automatic speech segmentation
techniques for concatenative TTS synthesis. Given
multiple ASMs, multiple boundary sets denoting the
collection of boundary time marks are produced by
multiple ASMs which adopt different methods from each

other. Then, for each boundary type, the candidate
selector chooses the best time mark among the boundaries
provided by the multiple ASMs. For each boundary type
observed in the training database, the average time
differences between the target time marks and those
provided by the ASMs are computed. Then the ASM with
the minimal error is selected as the winner for the given
boundary type[22]. The proposed system is entitled
Automatic Segmentation by Boundary Type Candidate
Selection (ASBTCS).

Jarifi et al.[23] analyzed three automatic segmentation
algorithms that he proposed to combine into one fusion
system. The first algorithm is segmentation by HMM. The
second one is entitled refinement by boundary model,
where a Gaussian Mixture Model (GMM) of each
boundary is used to improve the initial segmentation
performed by HMM. The third algorithm is a slightly
modified version of Brandt’s Generalized Likelihood
Ratio (GLR) method; its goal is to detect signal
discontinuities in the vicinity of the HMM boundaries.
Experimental results on a specific dataset showed that the
most accurate fusion method, called optimal fusion by
soft supervision, reduces by 25.5, 60 and 75%, the
number of segmentation errors made by refinement by
boundary model, standard HMM segmentation and
Brandt’s GLR method, respectively. As for TTS
applications, subjective listening tests showed that the
quality of the synthetic speech obtained when the speech
corpus is segmented by optimal fusion by soft supervision
is close to that obtained when the same corpus is
manually segmented.
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Predictive models: The main idea in this technique is to
learn a predictive model from training dataset for
phoneme boundaries, that can be applied later to predict
the most likely one on testing dataset. Different predictive
models from machine learning were employed in
literature, like linear and non-linear regression[24],
k-Nearest Neighborhood (kNN)[25], Multiple-Layer
Perception  (MLP)[26]  and  support  vector  machine
SVM[27]. 

Park and Kim[19] proposed using a spectral transition
measure to find the maximum spectral distortions as a
predicative model for boundary refinement.

Lee[26] considered the use of MLP for refinement
process. He proposed training a MLP for each kind of
phone transition groups and used the obtained model for
boundary correction. The optimum partitioning of the
entire phonetic transition space and the corresponding
MLPs were constructed with the objective of minimizing
the overall deviation from the manually marked
boundaries. The experimental results showed that >93%
of all phone boundaries have a boundary deviation from
a reference position <20 msec. Lee[26] also confirmed that
the synthesis speech produced using the database
constructed by the proposed method was perceptually
comparable to a that produced using hand-labeled
database, based on subjective listening tests.

The methods presented in[28, 19, 27, 29] are all based on
using SVM for boundary refinement. The feature vectors
combining both spectral and prosodic information are
used to represent the frames around the preliminary
boundary from forced alignment and then SVMs are used
to identify the most probable boundary.

Frihia and Bahi[16] proposed a combination of Hidden
Markov Models (HMMs) and Support Vector Machines
(SVMs) to segment and label the speech waveform into
phoneme units. HMMs generate the sequence of
phonemes and their boudaries; the multi-class SVM
refines the boundaries and corrects the labels. The
obtained segmented and labelled units may serve as a
training set for speech recognition applications. The
HMM/SVM segmentation algorithm was assessed using
both the hit rate and the Word Error Rate (WER); the
resulting scores were compared to those provided by the
manual segmentation and to those provided by the
well-known embedded learning algorithm. Experiments
on Arab Phone corpus showed that the speech recognizer
built upon the HMM/SVM segmentation outperforms in
terms of WER the one built upon the Embedded Learning
(EL) segmentation of about 0.05%, even in noisy
background. In terms of accuracy, results showed that
using SVM increases the quality of segmentation
compared to the segmentation  using  EL  within 
tolerances  20,  35  and 45 msec but not within tolerance
of 10 msec.

Hybrid: Hybrid post processing techniques refer to
methods that combine two or more post-processing
techniques.  Park and Kim[19]  proposed  an  approach  that 

Fig. 6: Block diagram of the regression fusion of BSEs[30]

combines both fusion and statistical correction techniques.
He proposed using multiple independent biased corrected
ASMs to produce a nal boundary time-mark. A training
procedure using manually segmented dataset is utilized to
obtain the bias and weight parameters. The bias and
weight parameters are calculated by averaging the errors
of each phonetic context in case the cost function is a
squared error. Afterward the bias parameters are xed and
the weight parameters are calculated through a gradient
projection optimization method with a set of constraints
imposed on the weight parameter space. A decision tree
which clusters all the phonetic contexts was utilized to
deal with the unseen phonetic contexts. This proposed
system is entitled Automatic Segmentation by Weighted
Sum of Multiple Bias-Corrected Results (ASWSBC).
Experimental results indicated that ASWSBC achieves a
segmentation accuracy of 97.07% for a 20 msec
threshold[19].

Lin and Jang[29] and Stolcke et al.[31] proposed a
different hybrid scheme that combines both predictive
models and fusion techniques together.

Mporas et al.[30] studied a number of linear and
non-linear regression methods used for combining
multiple phonetic boundary predictions obtained from
different Baseline Segmentations Engines (BSE). The
proposed fusion schemes were independent of the
implementation of the individual segmentation engines as
well as from their number. Mporas used 112 speech
segmentation engines based on HMMs. He relied on
sixteen different HMMs setups and on seven speech
parameterization techniques. Experimental results on the
phonetic segmentation task of TIMIT database showed
that the support vector regression scheme achieves more
accurate predictions compared to other fusion schemes.
Figure 6 depicts the block diagram of the proposed
system.

Lin and Jang[29] introduced the concept of a Score
Predictive Model (SPM) that can re ne the phoneme
boundaries of a fusion system obtained by HMM and
DTW for a Mandarin singing voice corpus. Several
experiments with different settings, including the use of
different initial estimates, different acoustic features and
various regression approaches were designed to verify the
feasibility of the proposed approach. Experimental results
demonstrate that the proposed SPM is able to effectively
refine the results of the HMM and DTW[19].
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Fig. 7: Hybrid boundary refinement scheme[20]

Stolcke et al.[31] proposed a fusion system that
combines the boundary estimates of multiple acoustic
front-ends that uses different speech parameterization
techniques. He studied two predictive models as boundary
correction models: Neural Networks (NN) and regression
trees. The proposed fusion is done by averaging the
results of the boundary corrected estimates of each
acoustic front-end using neural network which found to
achieve the highest improvement among 3 other different
fusion scenarios[31].

Zhao et al.[20] proposed a hybrid refinement scheme
based on combining all the three different post-processing
techniques previously exposed. A statistical method based
on state-level correction was proposed to improve the
segmentation results. A multi-resolution fusion process
was proposed to study the stepsize effects and combined
segmentations given by different HMMsto improve the
accuracy. Then, predictive models with a smaller step size
were designed to further refine the phone boundaries. By
applying the hybrid refinement scheme on a well-known
corpus, significant improvements of segmentation results
were observed, in terms of segmentation accuracy with
different tolerances MAE and RMSE. The proposed
system block diagram is depicted in Fig. 7.

Furthermore, a scenario of cross-corpora
segmentation was examined. Automatic phonetic
segmentation is performed on TIMIT corpus using the
segmentation system trained on a standard corpus
WSJCAM0 (Cambridge wall street journal), a British
version of WSJ by applying the proposed refinement
scheme. Experimental results showed that the proposed
refinement procedure can generate segmentation results
comparable to those given by well-trained acoustic
models obtained from the new corpus.

Modification of acoustic models: Another trend to
improve phonetic segmentation accuracy is based on
modifying the acoustic model. In literature, different
modifications have been proposed. Mporas et al.[30]

proposed    an    efficient    Viterbi-based   segmentation 

Fig. 8: Phonetic segmentation system using multiple
speech features VSMSF[30]

scheme, using multiple speech Fourier-based and
wavelet-based speech parameterization techniques, in the
acoustic modeling stage with respect to the phoneme
boundary type as shown in Fig. 8. 

The proposed system entitled Viterbi-based phoneme
Segmentation with Multiple Speech Features (VSMSF)
utilizes for each observation, the most accurate phonetic
boundary prediction (f) which is obtained through the
most appropriate among all speech features extraction
(FE) as the initial point for the prediction of the next
boundary position. The proposed method was evaluated
on the TIMIT database, employing several speech
parameterization techniques, like Fourier-based and
wavelet-based.

Adell et al.[32] proposed applying Dynamic Time
Warping (DTW) in combination with an acoustic
clustering method to produce more accurate phonetic
boundaries for TTS systems. Akdemir and Cilogu[28]

proposed a new HMM topology that includes a special
state for modeling the boundary, with one frame duration
only. This topology is left to right and has three states.
These states associated with the left phoneme class at the
boundary, the single boundary frame and the right
phoneme class. Phonemes are grouped into 10 classes
with the addition of special classes for “breath” and
“silence”, the boundary models are developed for each
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class-to-class phoneme transition, resulting in boundary
models. Keshet et al.[33] proposed using supervised
learning algorithm to learn an alignment function which
can be casted as a relaxed Support Vector Machine
(SVM) optimization problem. Keshet proposed an
iterative algorithm to solve. Results showed an
improvement in segmentation accuracy compared with the
standard HMM based method[33].

Hosom[7] proposed a modified HMM system
employing Artificial Neural Network (ANN) to calculate
probabilities. He proposed adding four energy-based
features to the standard acoustic cepstral feature. Using
probabilities of a state transition given an observation and
a computation of (context-dependent) phoneme-level
probability instead of phoneme probability into the
HMM/AAN hybrid system. The (context-dependent)
phoneme-level is a combination of probabilities of three
distinctive phonetic features (manner of articulation,
tongue position and height of tongue body) instead of
phoneme-level probabilities.

Kim et al.[34] proposed a Large Margin Discriminative
Semi-Markov Model (LMSMM) for phonetic recognition.
The Hidden Markov Model (HMM) framework that is
often used for phonetic recognition assumes only local
statistical dependencies between adjacent observations.
HMM is also used to predict a label for each observation
without explicit phone segmentation. However, the
Semi-Markov Model (SMM) framework allows
simultaneous segmentation and labeling of sequential data
based on a segment-based Markovian structure that
assumes statistical dependencies among all the
observations within a phone segment. For phonetic
recognition which is inherently a joint segmentation and
labeling problem, the SMM framework has the potential
to perform better than the HMM framework at the
expense of slight increase in computational complexity[34].
The SMM framework considered by Kim et al.[34] is based
on a non-probabilistic discriminant function that is linear
in the joint feature map which attempts to capture
long-range statistical dependencies among observations.
The parameters of the discriminant function were
estimated by a large margin learning framework for
structured prediction. The parameter estimation problem 
in    hand    lead    to    an    optimization    problem    with

many margin constraints and this constrained optimization
problem was solved using a stochastic gradient descent
algorithm[34]. Experimental results showed that the
proposed LMSMM outperformed the large margin
discriminative HMM in the TIMIT phonetic recognition
task.

In  a  similar  way  to  Akedmir  and  Ciloglu[28],
Yuan et al.[35] proposed the HMM segmentation system
modifications based on modeling the phone boundaries
with a special 1-state HMMs that are added to the HMMs
phone models to improve segmentation accuracy[35].

Brognaux and Drugman[36] focused on a special case
of Hidden Markov Model (HMM) based segmentation
system in which the models are trained on the same
corpus to align. The main advantage of this technique is
that it does not require manually-aligned data and can be
applied to any language. Brognaux studied first the impact
of various training parameters (e.g., models configuration,
number of training iterations) on the alignment accuracy
with corpora varying in speaking style and language.
Based on this study, Brognaux investigated the use of
supplementary acoustic features and proposed two novel
approaches: an initialization of the silence models based
on a Voice Activity Detection (VAD) algorithm and the
consideration of the forced alignment of the time reversed
sound. Assessment was carried out on 12 corpora of
different sizes, languages (some being under-resourced)
and speaking styles. Experimental results show that the
use of additional acoustic features increases the
segmentation accuracy and that the use of VAD achieves
very notable improvement, correcting > 60 % of the errors
superior to 40 msec. Finally, combining the three
improvement methods was also showed to provide the
highest improvement with very low variability across the
corpora, regardless of their size, improving the alignment
rate by 8-10 % absolute.

PERFORMANCE COMPARISON

In Table 1, we provide a detailed performance
comparison of the main segmentation methods exposed
above, in terms of segmentation accuracy. We note that
on TIMIT dataset Zhao et al.[20] achieves the best
accuracy using the hybrid post processing techniques.

Table 1: Comparison of the main segmentation methods
References Dataset Features Classifier Accuracy
Toledano et al.[12] Castilian Spanish: MFCCs, Δ, ΔΔMFCCs, HMMs, Context Dependent HMMs Tolerance#10 msec

VESLIM corpus (CDHMMs), Context Independent HMMs 87.18%
(CIHMMs), Statistical Correction of
Context Dependent Boundary Marks
(SCCDBM)+Speaker Adaption
(SA)+HMMs

Adell et al.[32] TALP Research MFCCs, Mel-Frequency HMMs, Artificial Neural Networks Tolerance  a.#10 msec:
Center corpus Power Cepstrums (ANNs), Regression Tree (RT),  82.00% b. #15 msec:

(MFPC) Δ, ΔΔ Dynamic Time Warping (DTW) 91.00%
MFPC, Δ Energy,
Zero Crossing Rate
(ZCR), mean frequency
before and after boundary
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Table 1: Continue
References Dataset Features Classifier Accuracy
Lee[26] Korean TTS MFCCs, Δ, ΔΔ MFCCs, HMMs, HMMs+Single Multilayer Tolerance #20 msec:

database Perceptron (MLP), HMMs+Multiple male: 93.2%,
MLPs,  HMMs+Multiple female: 93.9%
MLPs (retraining)

Park and Kim[19] Korean TTS MFCCs, Δ, ΔΔ MFCCs, Context-independent HMMs, Tolerance #20 msec:
research Normalized log-energy Context-dependent HMMs 97.05%
database

Jarifi et al.[23] French corpus, MFCCs,  Δ, ΔΔ MFCCs, HMMs, GMM+HMMs, Brants FR corpus: 10 msec:
English Corpus Generalized Likelihood Ratio (GLR) 79.90%, EN corpus:

10 msec: 81.71%

Hosom[7] TIMIT database Low-Energy Cepstral Mean HMM/ANN Tolerance #10 msec:
Subtraction (LECMS+Δ) 79.47

Tolerance #20: 93.36
Mprose et al.[18] TIMIT database MFCCs, LFCCs, HFCC-E, Combination of multiple Tolerance #10 msec:

PLP, WPF, SBC, classifiers: LR, MPL NN, SVR, 71.43%
MWP-ACE Model Trees M5 & HMMs

Zhao et al.[20] TIMIT database MFCCs, Δ, ΔΔ MFCCs SVM/LDA Tolerance #10 msec:
with cepstral mean and 81.31 with SVM
energy normalization 79.91 with LDA

Brognaux and 12 languages Spectral features like MFCCs Hidden Markov Models (HMMs) French neutral corpus:
Drugman[36] 30 msec tolerance: 94.84%;
Frihia and Arab Phone: MFCCs, Δ,ΔΔ MFCCs Hidden Markov Models Tolerance #20 msec:
Bahi[16] Arabic languages (HMMs)+SVM 85.88

CONCLUSION

In this study, we exposed an in-depth survey of the
different Text-Dependent phonetic segmentation
algorithms that exist in literature so far. These algorithms
fall into two groups: post processing techniques that are
based on refining the initial segmentation results through
different procedures and acoustic model modification
techniques.

Though modifications of the acoustic models may
improve the accuracy of the segmentation[20], however,
applying such kind of methods needs a restructuring and
re-training of all the acoustic models and thus, they
cannot by applied to existing segmentation systems. The
post-processing techniques can be directly applied to any
existing segmentation systems which make them more
convenient and flexible than their counterparts. Also,
some acoustic modeling techniques may sacrifice the
segmentation results in a certain range to improve the
overall performance as noted by Zhao et al.[20]. For
example, the segmentation accuracy within 5 msec is
reduced by Hosom[7] after applying the proposed model.

We have noted that with the exception of the research
done by Mprose et al.[16], almost all the reviewed studies
used MFCCs or MFCCs like as acoustic features, though
wavelet based features has achieved better performance in
phoneme recognition task[37].
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