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Abstract: Advection-diffusion equation in two
dimensions was estimated using the separation technique.
This solution was calculated using different dispersion
parameters   (Brigg’s   and   power   law)   to   get   the
non-Gaussian crosswind integrated concentrations. The
results of predicted model were compared with measuring
observed data of Sulfur Hexafluoride SF6 on Copenhagen
in Denmark.

INTRODUCTION

Due to physical complexity for dispersion of
pollutants in the atmosphere creates a permanent source
of challenging problems. Air pollutant emitted from
different sources affect directly or indirectly man and his
environment. Air pollutants are transported, dispersed or
deposited by meteorological and topographical conditions.
The atmospheric advection-diffusion equation (Seinfeld,
1986) had long been used to describe the transport of
pollutant in a turbulent atmosphere. Its analytical solution
was of fundamental importance in understanding and
describing physical phenomena (Pasquill and Smith,
1983). The analytical solution has many advantages over
the numerical solution, since, all parameters appear
explicitly in the solution, so, their effect can be easily
investigated (Nieuwstadt, 1980). The analytical solution
was used to examine the accuracy and performance of the
numerical solutions (Runca and Sardei, 1975; Liu and
Seinfeld, 1975; Runca, 1982). An analytical solution had

received much attention and had been studied extensively
in the Gaussian plume model. Goulart et al. (2017) have
proposed simple fractional differential equation models
for the steady state spatial distribution of concentration of
a non-reactive pollutant in Planetary Boundary Layer
(PBL). They found that fractional derivatives models
perform better than the traditional Gaussian model.

Marrouf et al. (2015) have formulated a
mathematical model for dispersion of air pollutants in
moderated winds by taking into account the diffusion in
vertical height direction and advection along the mean
wind by considering the eddy diffusivity and wind speed
are assumed to be constant.

In this model, we assumed that wind speed and
turbulence diffusion coefficients were invariant with
height. The non-Gaussian plume model using different
dispersion schemes, wind speed in power law and plume
rise were used to get the crosswind integrated
concentrations. One used the statistical technique to
compare between the observed and all predicted
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concentrations obtained from different dispersion schemes
to know the best predicted model. In this research, we
estimated advection-diffusion equation in two dimensions
by using separation method and different shaped of
dispersion parameters (Brigg’s and power law methods).
The predicted model was compared with measuring
observed data of Sulfur Hexafluoride SF6 on Copenhagen
in Denmark.

MATERIALS AND METHODS

Theoretical aspects: The dispersion of pollutants in the
atmosphere is governed by the basic atmospheric
diffusion equation. Under the assumption of
incompressible flow, atmospheric diffusion equation
based on the gradient transport theory can be written in
the  rectangular  coordinate  system  as  (Hanna  et  al.,
1982):

(1)
y z

x
C C C C C

+u +v +w K +
t x y z x x

C C
K + K +S+R

y y z z

              

      
        

Where:
C = The mean concentration of a pollutant

(Bq/m3), (μg/m3) and (ppm)
S and R = The source and removal terms, respectively,

(u, v, w) and (kx, ky, kz) are the components
of wind and diffusivity vectors in x, y and w
directions, respectively in a Eulerian frame of
reference

The following assumptions are made in order to
simplify Eq. 1:

C Steady-state   conditions   are   considered,   i.e.,
MC/Mt  = 0

C As the vertical velocity is much smaller than the
horizontal one inthex-direction, the term w (MC/Mz) is
neglected

C The  x-axis  is  oriented  in  the  direction  of  mean
wind u = U and U much greater than the wind speed 
v in y-direction the term v (MC/My) is neglected

C Source and removal (physical/chemical) pollutants
are ignored, so that, S = 0 and R = 0

With the above assumptions (Eq. 1) reduces to:

(2)x y z

C C C C
u K + K + K

x x x y y z z

                          

The advection term in x direction is larger than the
diffusion in x direction then we will neglect the diffusion
term in x direction. Equation becomes:

(3)y z

C C C
u K + K

x y y z z

                 

The eddy diffusivity is kz expressed as functions of
downwind distance x as:

(4)zk k(x)

Also,  after  integrating Eq. 3 with respect to y from
(-4 to 4), Eq. 2 becomes:

(5)
2

y y

2

C C
u k(x)

x z

 


 

Equation 3 is solved together with the following
boundary conditions. The flux at the ground and top of the
mixing layer “h” can be given by: 

(6)z

C
K 0 at z 0,h

z


 



where, “h” is a mixing height. A continuous point source
with  strength  Q  is  assumed  to  be  located  at  the 
point (0, ys, z), i.e:

(7)suC Q (z-h )            as          x 0  

Where:
δ = Dirac’s delta function
hs = A stack height and 
“u” = A constant wind speed

Using the method of eigenfunction expansion, one
can represent the general solution Cy (X, Z) as:

(8)y n n n
n 0 n 0

C (x, z) C (x, z) X (x).Z (z)
 

 

  

in  which  the  functions  Xn  (x)  or  Zn  (z)  form  a
complete  of  eigenfunction  which  implies  that  they  are
orthogonal, i.e:

(9)n m

0 , n m

Z (z)Z (z)dz

1 , n m


 






After introducing Eq. 8 in Eq. 5  one gets:

(10)
2

n n n n2
n 0 n 0

u X (x).Z (z) k(x) X (x).Z (z)
x z

 

 

 


  

(11)
2

n n
n n 2

n 0

X (x) Z (z)
uZ (z) -k(x)X (x) 0

x z





  
   


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Which simplified for each n, one can get:

(12)
2

n n
n n 2

dX (x) d Z (z)
uZ (z) k(x)X (x)

dx dz


Using the method of separation of variables and
divided Eq. 12 by k(x) Xn (x) Zn (z) one gets:

(13)
2

2n n
n2

n n

u 1 X (x) 1 Z (z)
-

k(x) X (x) x Z (z) z

 
  

 

where,    is  a  constant  seperation  of  variable.2
n

Equation 13 can be divided into two equations in the
form:

(14)
2n
n

n

u 1 dX (x)
-

k(x) X (x) dx
 

(15)
2

2n
n2

n

1 d Z (z)
-

Z (z) dz
 

Equation 14 can be taken in the form:

(16)
2

n n

n

dX (x) -
k(x)dx

X (x) u




By integrating Eq. 16 with respect to “x”, one gets: 

(17)
x2

n
n n

0

-
X (x) exp k(x)dx

u

 
   

 


where, an is constant. Equation 15 becomes in the form:

(18)
2

2n
n n2

Z (z)
+ Z (z) 0

z


 



Which the solution is given in the form:

(19)n n n n nZ (z) A sin ( z)+B cos( z)  

where, An and Bn are constants, since, the function Zn  (z)
forms  a  complete  of  Eigenfunction. Substituting  from 
Eq. 17 and 19 in Eq. 8 one gets:

(20)

 

x2
n

n n

0

n n n n

-
C (x, z) exp k(x)dx

u

A sin ( z)+B cos( z)

 
   

 
 



Differentiating Eq. 20 and from the boundary condition
Eq. 6 one gets:

(21)n nA 0 

But  βn … 0  then,  An  =  0,  so, Zn (z) = Bn Cos (βn z) and
Eq. 20 becomes:

(22)
x2

n
n n n n

0

-
C (x, z) B cos( z)exp k(x)dx

u

 
    

 


Differentiating Eq. 22 and from the boundary condition
Eq. 6, one obtains:

(23)n n n n n

n
B sin( h) 0 , h 0

h


      

In Eq. 23 if one takes n = 0 then and Eq. 18 takes the
form:

(24)
2

0
2

Z (z)
0

z






(25)0Z (z) Lz+M

where, L and M are constants. From the boundary
condition Eq. 6, Eq. 19 in term of n = 0 leads to:

(26)0Z (z)
0 at z 0

z


 



Comparing (Eq. 25) with (Eq. 26) one gets:

(27)0L 0 Z M  

Equation 8 can be written in another form as follows:

(28)y 0 0 n n
n 1

C (x, z) X (x)Z (Z)+ X (x)Z (Z)




 

(29)
x2

0
0 0 0

0

-
X (x) exp k(x)dx

u

 
    

 


Substituting from Eq. 22 in Eq. 28, one can get:

(30)
x2

n
y 0 n n

n 1 0

-
C (x, z) + cos( z)exp k(x)dx

u





 
     

 
 

where, ξ0 = a0 M, ξn = an Bn using the boundary condition
Eq. 7 at x = 0 in Eq. 30:

(31)0 n s s
n 1

n Q
+ cos z (z-h ), 0 h a

h u





       
 



Integrating Eq. 31 with respect to z from 0-h then:

(32)0

Q

uh
 

Substituting from Eq. 32 in Eq. 31, one gets:

(33)n s
n 1

Q n Q
+ cos z (z-h )

uh h u





    
 


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Multiplying Eq. 33 by cos  and integrating it  with
n

z
h

 
 
 

respect to z from 0 to h. then:

(34)n s

2Q n
cos h

uh h

    
 

Substituting by  ξ0, ξn and βn in Eq. 30 then the general
solution of Eq. 8 takes the form:

(35)
s

n 1

y x2 2

2
0

n n
1+2 cos h cos z

h hQ
C (x,z)

uh n
exp - k(x)dx

h u





     
           

  
   





Equation 35 for n = 1 becomes:

(36)

s

y
x2

2
0

1+2cos( h )COS( Z)exp
h hc (x,z) 1

Q uh
- k(x)dx

h u

  
 
     
  
  



Since, K (X) =  substituting in Eq. 36, taking z =z

2

u
2x



0 at ground, the crosswind normalized concentration takes
the form:

(37)
2 2

x
s z

2 0

cy(x,0) 1 h - u
1+2cos .exp dx

Q uh h uh 2x

        
  



Where:
cy/Q = A crosswind normalized integrated concentration
Q = An   emission   rate   u    is   the   wind   speed  

in  x-direction
σz = The standard deviation in z-direction
hs = The stack height
h = The mixing height

We used two shapes of dispersion parameters as
follows:

Brigg’s method
Firstly: In extremely and moderately unstable condition,
taking σz = 0.24x (1+0.001x)1/2 in Brigg’s (1969) urban
condition (Hanna et al., 1982) by substituting in above
equation, one gets:

   

s

y 2u
1/2

2
x

2 0

h
1+2cos . exp

h
c (x,0) 1

0.24x 1+0.001xQ uh -
dx

uh 2x

  
    

             



Then, this equation becomes:

   

s

y
22

x
2

2 0

h
1+2cos . exp

hc (x,0) 1

0.24Q uh -
x+0.001x dx

h 2

  
         

    


By integrating:

(38)
 

2
s

2

y

2 2 3

h -
1+2cos . exp

h hc (x,0) 1

Q uh 0.24 x 0.001x
+

2 2 3

    
   

      
  
    

Secondly: In slightly unstable condition in Brigg’s urban
condition (Hanna et al., 1982):

 

s

y
22

x

2 0

h
1+2cos .exp

hc (x,0) 1

0.20xQ uh -
dx

h 2x

  
         

    


   

s

y
22

x2

2 0

h
1+2cos .exp

hc (x,0) 1

xQ uh -
0.20 dx

h 2x

  
         

    


 

y s

2
x

2 0

c (x,0) 1 h
1+2cos .exp

Q uh h

-
0.020 xdx

h

      
 
 
 



(39)

 

y s

2
2

2

c (x,0) 1 h
1+2cos .exp

Q uh h

-
0.01x

h

      
 
 
 

Third: In neutral condition in Brigg’s urban condition
(Hanna et al., 1982) by substituting in Eq. 37, one gets:

 

y s

2-1

2
2

x

2 0

c (x,0) 1 h
1+2cos .exp

Q uh h

1+0.003x
-

dx
h 2x

      
  
     
 
 
 


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 
 

y s

22
x

2 0

c (x,0) 1 h
1+2cos .exp

Q uh h

0.14- x
dx

h 2 1+0.0003x

      
   

  


By integrating one gets:

(40)

 

 
 

22
s

2

y

2

0.14h -
1+2cos .exp

h h 2c (x,0) 1

Q uh x 1
- In | 1+0.0003x

0.0003 0.0003

       
   

  
 
 
  

Fourth: In slightly and moderately stable, σz = 0.08x
(1+0.00015x)-1/2 in Brigg’s urban condition (Hanna et al.,
1982) by substituting in Eq. 37, one gets:

  

 

y

2-1

2
2

x
s

2 0

c x,0 1
1+2cos10

Q uh

0.08x 0.00015x
h -

.exp dx
h h 2x



                     



 

 

y

2
x2s

2 0

c x,0 1

Q uh

h - x
1+2cos .exp 0.08 dx

h h 1+0.00015x



             


By integrating, one gets:

. . . . . (41)

 

 
 

 

2
y s

2

2

-5
2-5 -5

C x,y 2 h -
.exp

Q uh h h

0.08 x 1
- In | 1+15×10 x

2 15 10 15 10

   
     

  
  
    

Power  law  method:  Smith  worked  out  analytical
Power-Law formulae for σy and  σz to be used easily than
using a graph or a table. He used the Brookhaven National
Laboratory   (BNL)   formulas   which   are   defined   by
him  using  wind  direction  θ  recorded  over  1  h  as
follows:

Where:
A = Fluctuations of θ exceed 90° is a very unstable

conditions
B1 = Fluctuations of θ from 40-90° is a moderately

unstable
B2 = Flsuctuations of θ from 15-40° is a slightly unstable

C = Fluctuations of θ>15° with strip chart showing an
unbroken solid core in the trace is a neutral

D = Trace in a line, short-term fluctuations of θ<15° is
a Moderately stable

Smith summarized the BNL formulas which were
based on  hourly  average  measurements  of  diffusion  to 
about 10  km  of  a  no  buoyant  plume  released  from  a 
height of 108 m:

b
y ax 

d
z ax 

where, values of the parameters “a, b, c” and “d” are
given in Table 1 and 2.

Firstly: σz = 0.33x0.86 and by substituting in Eq. 37, one
gets:

   20.862
xy s

2 0

0.33xC X,0 1 h -
1+2cos .exp dx

Q uh h h 2x

         


(42)
   22

xy 0.72s
2 0

C X,0 0.331 h -
1+2cos .exp x dx

Q uh h h 2

        


Secondly, σz = 0.41x0.91 and by substituting in Eq. 37,
one gets:

   20.912
xy s

2 0

0.41xC x,0 1 h -
1+2cos .exp dx

Q uh h h 2x

          


After integrating, one gets:

(43)
   22 1.82

y s
2

C X,0 0.411 h - x
1+2cos .exp

Q uh h h 2 1.82

         
    

Third: σz  = 0.22x0.78 and by substituting in Eq. 37, one
gets:

   20.782
xy s

2 0

0.22xC x,0 1 h -
1+2cos .exp dx

Q uh h h 2x

         


After integrating, one gets:

(44)
   22 1.56

y s
2

C x,0 0.221 h - x
1+2cos .exp

Q uh h h 2 1.56

         
    

Fourth:  σz   =   0.06   x0.71   and   by   substituting   in 
Eq. 37, one gets:
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Table 1: Brookhaven national laboratory parameters
Stability classes Very and moderately unstable (B1) Slightly unstable (B2) Neutral (D) Moderately stable (F)
A 0.36 0.40 0.32 0.31
B 0.86 0.91 0.78 0.71
C 0.33 0.41 0.22 0.06
D 0.86 0.91 0.78 0.71

Table 2: Comparison between the predicated and observed crosswind-integrated normalized concentration at different downwind distance, wind speed
and distance for the different runs

cy (x, z)/Q (10-4s/m2)
----------------------------------------------------------------------------

Run No. Stability h (m) U(115) (m/sec) X(m) Observed Predicated Brigg’s Predicated power law
1 A 1980 3.40 1900 6.48 3.66 4.31
1 A 1980 3.40 3700 2.31 2.01 4.10
1 C 1920 10.60 2100 5.38 1.35 1.33
2 C 1920 10.60 4200 2.95 1.09 1.09
2 B 1120 5.00 1900 8.20 3.13 4.82
3 B 1120 5.00 3700 6.22 1.80 4.19
3 B 1120 5.00 5400 4.30 1.79 3.55
3 C 390 4.60 4000 11.66 5.57 5.57
3 C 820 6.70 2100 6.72 3.55 3.37
4 C 820 6.70 4200 5.84 2.07 2.05
5 C 820 6.70 6100 4.97 1.83 1.84
5 C 1300 6.70 2000 3.96 1.47 1.43
6 C 1300 13.20 4200 2.22 0.98 0.97
6 C 1300 13.20 5900 1.83 0.73 0.74
6 B 1850 13.20 2000 6.70 1.66 2.05
7 B 1850 7.60 4100 3.25 0.81 1.91
7 B 1850 7.60 5300 2.23 0.72 1.82
7 D 810 9.40 1900 4.16 3.26 1.72
8 D 810 9.40 3600 2.02 2.66 2.41
8 D 810 9.40 5300 1.52 2.15 3.31
8 C 2090 10.50 2100 4.58 1.27 1.26
9 C 2090 10.50 4200 3.11 1.06 1.05
9 C 2090 10.50 6000 2.59 0.85 0.87

   20.712
xy s

2 0

0.06xC x,0 1 h -
1+2cos . exp dx

Q uh H h 2x

         


After integrating, one gets:

(45)
   22 1.42

y s
2

C x,0 0.061 h - x
1+2cos .exp

Q uh h h 2 1.42

         
    

RESULTS AND DISCUSSION

The used data set was observed from the atmospheric
diffusion experiments conducted at the Northern part of
Copenhagen, Denmark, under unstable conditions
(Gryning and Lyck, 1984; Gryning et al., 1987). The
tracer Sulfur Hexafluoride (SF6) was released from a
tower at a height of 115 m without buoyancy. The values
of  different  parameters  such  as  stability,  wind  speed
 at 10 m (U10), wind speed at 115 m (U115) and downwind
distance  during  the  experiment  are  represented  in
(Table 2). Comparison between the predicated and
observed crosswind-integrated normalized concentration
with the emission rate at different downwind distance for
the different runs are estimated.

From two Fig. 1 and 2 one concludes that some
predicted data is one to one with observed crosswind
normalized  integrated  concentrations  and  others located
inside  a  factor  of  two  and  others  inside  a  factor  of
four.

Model evaluation statistics:  Now, the statistical method
is presented and comparison between predicted and
observed results as offered by Hanna (1989). The
following  standard  statistical  performance  measures
that   characterize   the   agreement   between   prediction
(Cp = Cpred/Q) and observations (Co = Cobs/Q) (Table 3):

 o p

o p

C -C
Fraction Bais (FB)

0.5C +C

  

 
 
 

2

p o

p o

C -C
Normalized, Mean Square Error (NMSE)

C C


   
 

Nm
oi o

pi p
i 1m p o

C -C1
Correlationcoefficient (COR) C -C

N 

 
 
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Fig. 1: The variation of the observed and predicted crosswind normalized integrated concentration via. downwind
distance

Fig. 2: The observed and predicted crosswind normalized
integrated concentration

Table 3: The statistical evaluation of present two models
Models (stable condition) NMSE FB COR FAC2
Brigg’s method 1.040 0.780 0.74 0.49
Power law method 0.710 0.600 0.64 0.63

p

o

C
Factor of Two(FAC2) 0.5 2.0

C
  

where,  σp  and  σo  are  the  standard  deviations  of
predicted Cp and observed Co concentration, respectively.
Here, the over bars indicate the average over all
measurements.  A  perfect  model  would  have  the
following idealized  performance  NMSE  =  FB  =  0  and 
COR =  FAC2 = 1.0.

From the statistical evaluations, one finds that the two
models are inside  a  factor  of  two  with  observed  data. 

Regarding to NMSE and FB for the power law is good
with observed data than the Brigg’s method but the
correlation  for  the  Brigg’s  method  is  well  than  power
law.

CONCLUSION

In this study, one has formulated a mathematical
model for dispersion of air pollutants in moderated winds.
The non-Gaussian crosswind integrated concentrations are
obtained by using separation technique to get on the
solution of the advection-diffusion equation in two
dimensions. The different dispersion parameters Brigg’s
and power law are used. One used observed normalized
concentration data for Sulfur Hexafluoride (SF6) from the
atmospheric diffusion experiments conducted at the
Northern part of Copenhagen, Denmark to compare with
predicted concentration data using different schemes of
dispersion parameters. From the statistical evaluations,
one finds that the two models are inside a factor of two
with observed data. Regarding to NMSE and FB for the
power law is a good with observed data than the Brigg’s
method but the correlation for the Brigg’s method is well
than power law.
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