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Abstract: Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research
subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study,
we propose a new speech parameterization method based on concatenating two wavelet packet decompositions,
one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech
features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition
show that the proposed wavelet-based features outperform MFCC in all noisy conditions.
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INTRODUCTION

Speech is the oldest and most effective means of
communication  among  humans.  Hence,  the  main
purpose of speech recognition is to enable humans to
communicate with computers more naturally and
effectively using some algorithms that convert speech
signals into the corresponding text form. Speech
recognition techniques are one of the most challenging
technologies in the field of computer science.

Early speech recognition systems were based on
knowledge-based algorithms. The designers of the
systems set rules for interviewing the sound signals of
their phonemes as well as high-level cognitive tools (such
as the dictionary, etc.).

Speech recognition process consists of three basic
steps. The first step is the fragmentation of the acoustic
signal into time-stable frames and applying feature
extraction to each frame. The second step is building an
acoustic model that can describe the different parts of
speech signals. The last step is the classification process
(decoding) that takes an arbitrary speech and determines
the specific sequence of the acoustic models to which it
belongs given that a language model is provided to
determine that textual sequence that best describes the
acoustic signal.

Although, many techniques have been developed for
automatic speech recognition, the most widespread
technique is based on Gaussian Mixture-Hidden Markov
Model GMM-HMM which is the nucleus of the speech
acoustic modeling. Each phoneme is represented by its
own statistical model. HMM-based ASR is preferred
because of better generalization characteristics and low
memory requirements (Rabiner and Juang, 1993).

Recently, ASR has found new applications such as
speech  recognition  over  the  mobile  network  which
needs to run in different environments under different
noise conditions and hence the need to develop robust
ASR that can perform well in noisy environments. The
performance of the ASR depends mainly on the
robustness  and  resistance  of  the  acoustic  features  to
noise.  Different  robust  feature  extraction  techniques
have been proposed in the literature like RASTA-PLP
(relative spectra) processing (Hermansky and Morgan,
1994), one-sided autocorrelation LPC (Linear Predictive
Coefcients)  (Yuo  and  Wang,  1999)  and power
difference (Xu and Wei, 2000) and cepstral subtraction
method  (Rahim  et  al.,  1996).  All  these  studies  have
been carried out using the STFT (Short-Time Fourier
transform)  based  features  (Farooq  and  Datta,  2004).
The  recognition  performance  of  the  plosives  is  found
to  be  specically  poor  with  STFT  based  features.  This
is  due  to  the  fact  that  although  we  assume  that  the
signal is stationary during the window duration, it is not
perfectly true for the case of plosives (Farooq and Datta,
2004).

In this study, we propose a new robust feature
extraction algorithm for speech signal based on wavelet
transform. The proposed algorithm make use of two
different types of wavelet decomposition one with high
quality wavelet filters and the other with low quality
wavelet filters and make a concatenation of both
decompositions.

Literature review: Speech recognition depends on the
extraction of characteristic features in the acoustic signal
and then represents these features using an appropriate
statistical data model.
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The process of feature extracting aims at extracting
discriminative characteristics of the linguistic content in
the speech signal. In the literature, there are many
parameterizing  features  techniques  to  characterize
speech signal but Mel Frequency Cepstral Coefficients
(MFCC)  is  the  most  common  technique  (Davis  and
Mermelstein, 1980).

Because the speech signal is highly unstable, this
signal is usually divided into overlapping frames with
fixed lengths ranging from 15~30 msec. This partitioning
(segmentation) method results in the loss of the phonemes
boundaries. The frame can contain two parts of two
consecutive phonemes not one.

Farooq and Datta (2001) proposed using a set of
wavelet filters to achieve the frequency discrimination of
the Mel scale. The two-channel Daubechies (DB) filters
were used to derive new sets of features. An improvement
was observed in classifying unvoiced phonemes as the
recognition performance for the unvoiced fricative
phonemes and voiced stops phonemes in TIMIT database
is found to be superior using the derived WP (Wavelet
Packet)  features  over  MFCC  features  (Farooq  and
Datta, 2001, 2003).

Choueiter and Glass (2007) proposed designing new
wavelets using filter design methods. Two filter design
techniques referred to as filter matching and attenuation
minimization are used to design the new wavelets. To
improve the exibility in frequency partitioning, they
proposed implementing rational filter banks that naturally
incorporate the critical-band effect in the human auditory
system. Experiments using energy-based measurement
show that the designed wavelets outperform off-the-shelf
wavelets as well as an MFCC baseline in a phonetic classi
cation task (Choueiter and Glass, 2007).

Hung and Fan (2009) proposed a novel scheme that
applies feature statistics normalization techniques for
robust speech recognition. In the proposed approach, the
processed temporal-domain feature sequence is first
decomposed into non-uniform subbands using the
Discrete Wavelet Transform (DWT) and then each sub
band stream is individually processed by well-known
normalization methods such as Mean and Variance
Normalization (MVN) and Histogram Equalization
(HEQ). Experiments show that all the normalized features
outperform MFCC, especially in noisy environments. 

Pavez and Silva (2012) proposed a new type of
phonetic features for speech recognition systems based on
wavelet packets called “Wavelet-Packet Cepstral
Coefficients (WPCC)”. This research is based on the idea
of optimal selection of filters for patterns recognition
based on the principle of “minimal probability of error
recognition”. Phonemes recognition experiments were
conducted using the proposed features on TIMIT
database.  The   performance   of   the   proposed   WPCC
features was compared to the MFCC features. The

researchers showed that the proposed features outperform
the  MFCC  features.  Sahu   et   al.    (2014)   and 
Biswas et al. (2015), proposed a new set of acoustic
features that also depend on wavelet packets called
Wavelet packet based ERB (Equivalent Rectangular
Bandwidth) Cepstral (WERBC). The main idea was to
develop wavelet packet tree decomposition similar to the
24 sub-bands of the ERB filters (Sahu et al., 2014).
Comparative study with baseline systems is presented to
show the robustness of the proposed WERBC features.
The multi-resolution property of wavelet allows for a
better modeling of phoneme classes, especially for
voiceless class. The performance of the new feature is
studied for the task of phoneme recognition. WERBC
features have shown an overall improvement in
recognition performance for English phoneme as
compared to Wavelet like MFCC (WMFCC) (Sahu et al.,
2014) and STFT based features. WERBC is found to be
superior compared to the WMFCC, especially in case of
noisy condition. The speaker independent results show
considerable improvement in recognition of the phoneme
classes tested with TIMIT database. Further, the wavelet-
based features are found  to  be  robust  in  the  presence 
of  different noises.

Vignolo  et  al.  (2016)  proposed  the  use  of  a
multi-purpose    genetic    algorithm    to    optimize
wavelet-based speech representation where the most
relevant parameters are selected from the complete
wavelet packet decomposition, so that, the accuracy of
classification of phonemes is maximized and the number
of used features is minimized (after the vector of features
and thus reduced complexity) using the multi-objective
genetic algorithm. Experiments have shown that the
classification of phonemes using selected wavelet features
surpasses the best acoustic features, especially in the
noisy environments.

Upadhyaya et al. (2018) proposed using a Mel scaled
M-band wavelet filter bank structure to extract robust
acoustic features for speech recognition application.
Results (Biswas et al., 2016) shows that the proposed
feature extraction from the proposed filter bank shows an
improvement in terms of Word Recognition Accuracy
(WRA) at all SNR range (20-0 dB) over baseline (MFCC)
features.

Palo and Mohanty (2017) proposed a combination of
reduced features for emotional speech recognition. The
baseline features like wavelet, LPCC (Linear Prediction
Cepstral Coefficient) and MFCC coefficients are
extracted. These features are also extracted from wavelet
coefficients instead of the direct signal and are named as
WLPCC and WMFCC. Next to it, VQ (Vector
Quantization) method of reduction is applied to the
baseline MFCC, LPCC and resultant WLPCC and
WMFCC. Different combination of these reduced feature
sets are attempted and compared for enhancement in
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accuracy (Palo and Mohanty, 2017). Experiments show
that the combined features exhibit superior performance
in terms of Mean Square Error (MSE) for classification
task using Radial Basis Function Network (RBFNN)
classifier (Palo and Mohanty, 2017).

Wang et al. (2018) proposed a feature compression
algorithm entitled Suppression by Selecting Wavelets
(SSW), to achieve the two main goals of Distributed
Speech Recognition (DSR): minimizing memory and
device requirements. And maintaining or even improving
the recognition performance (Wang et al., 2018). The first
step of SSW applies DWT to decompose the full-band
input feature stream into Low-modulation Frequency
Component (LFC) and High-modulation Frequency
Component (HFC). The second step of SSW discards the
HFC information and only preserves the LFC information
prior to transmitting across a network to a remote server.
As soon as the LFC feature sequence is received on the
server side, the third step of SSW normalizes the LFC
sequence to alleviate the environmental mismatch
between training and testing phases. Next, a feature vector
with all-zero elements is prepared as the HFC which
works together with the normalized LFC to reconstruct
the  new  feature  stream  via.  inverse  DWT  (IDWT)
(Wang et al., 2017). The reconstructed feature stream is
further compensated via a high-pass filter which aims to
alleviate possible over-smoothing effects. The resulting
features are then used for speech recognition.
Experiments in this study reveals that SSW can
accomplish the main goals of DSR: improving
performance on the back-end server while also providing
up to a 50% compression rate (by discarding the HFC
information) during the transmission stage (Wang et al.,
2017).

In all previous works that used wavelet-based feature
in ASR the quality factor of the wavelet filter was no
taken into account. The Q-factor of an oscillatory pulse is
the  ratio  of  its  center  frequency  to  its  bandwidth. The
Q-factor of a wavelet transform should be chosen in part
according to the oscillatory behavior of the signal to
which it is applied (Selesnick, 2011a, b). For example,
when using wavelets for the analysis and processing of
oscillatory signals (speech, EEG, etc.), the wavelet
transform should have a relatively high Q-factor. On the
other hand when processing signals with little or no
oscillatory behavior (such as a scan-line from a
photographic image), the wavelet transform should have
a low Q-factor (Selesnick, 2011a, b). Selesnick (2011a, b)
proposed a wavelet transform with tunable Q-factor; the
transform can be tuned according to the oscillatory
behavior  of  the  signal  to  which  it  is  applied.  The
tunable-Q  wavelet  transform  is  based  on  the multirate 
filter  banks  illustrated  in  Fig.  1.  It  is composed of two
filters:  a  Low  Pass  Scaling  filter  (LPS)  with  scaling 

Fig. 1: Analysis  and  synthesis  filter  banks  for  the
tunable-Q wavelet transform (Selesnick, 2011)

parameter α that preserves the low-frequency content of
the x(n) signal and a High Pass Scaling filter (HPS) with
scaling parameter β. The low-pass sub-band signal v0(n)
and high-pass sub-band signal v1(n) have sampling rates
of αfs and βfs, respectively where the sampling rate of the
input signal is fs.

We propose using the tunable-Q wavelet transform to
derive new speech features that we entitle Resonance
Wavelet Decomposition Cepstral Coefficients (RWDCC).
The algorithm to derive the new feature is explained in
the following section.

MATERIALS AND METHODS

Resonance Wavelet Decomposition Cepstral
Coefficients (RWDCC): Speech signal is composed of
phonemes with different acoustic characteristics, for
example some phonemes have high resonance
(oscillatory) behavior like vowels while other like stops
contains  two  parts,  one  with  low  resonance  and
another with high resonance. The high-resonance
components differ from the low-resonance ones by the
duration to which their oscillations are sustained. By a
high-resonance component, we mean a signal consisting
of multiple simultaneous sustained oscillations. In
contrast by a low-resonance component, we mean a signal
consisting of non-oscillatory transients of unspecified
shape and duration (Selesnick, 2011a, b). As Selesnick
showed in (Selesnick, 2011a, b) a low-resonance pulse
may be either a high frequency signal (pulse 1-Fig. 2) or
a low frequency signal (pulse 3-Fig. 2). Low-resonance
pulses are not restricted to any single band of 
frequencies.  Therefore,  the  low-resonance  component
of  a  signal  cannot  be  extracted  from  the  signal  by
frequency-based filtering. Likewise, a high-resonance
pulse may be either a high frequency signal (pulse 2) or a
low frequency signal (pulse 4). Figure 3 shows an
example  of   the  decomposing  the  phoneme  (p)  into
high-resonance  and  low-resonance  components  using
(q factor function in MATLAB).

Selesnick (2011a, b) suggested decomposing signals
according to the degree of resonance (resonance-based
decomposition) which is a new nonlinear signal analysis
method based not on frequency or scale as provided by
the Fourier and wavelet transforms but on resonance. This 
method  decomposes  a   complex   non-stationary   signal
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Fig. 2(a, b): A low Q-factor wavelet transform is suitable for the efficient representation of pulses 1 and 3. The efficient
representation of pulses 2 and 4 calls for a wavelet transform with higher Q-factor. Selesnick (2011a, b)

Fig. 3 (a-d): Phoneme (p) resonance component,  (a) Speech signal, (b) High-resonance component, (c) Low-resonance
component and (d) Residual

 (such as speech signal) into a high-resonance component
(multiple   simultaneous   sustained   oscillations)   and
low-resonance component (non-oscillatory transients of
unspecified shape and duration) using a combination of
low and high Q-factor filters.

Therefore, it is not appropriate to use one type of
wavelet filters when extracting wavelet-based features.

This   is   the   fundamental   point   in   the   proposed
acoustic  features  extraction  algorithm.  We  propose
using   two   wavelet   decomposition:   one   with   high
Q-factor wavelet to characterize the highly oscillatory
parts   in   speech   (high   resonance)   and   another   with
low Q-factor wavelet to characterize the low oscillatory
parts.
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Fig. 4: RWDCC (Resonance Wavelet Decomposition
Cepstral coefficient) Proposed algorithm
flowchart

Wavelet transform-based feature extraction is first
performed   using   the   low   Q-factor   filters   and   high
Q-factor filters. Then we concatenate the two features
vectors we obtained into one single vector that captures
the  distinctive  features  of  both  high-resonance  and
low-resonance components. Figure 4 shows the flowchart
of the proposed algorithm.

The proposed features extraction algorithm starts
with preprocessing stage. A high pre-emphasis filter is
applied  on  the  whole  speech  signal,  then  a  frame size
24 msec with 14 msec overlap is used, windowed by
Hamming widows, to derive cepstral features. To extract
the low resonance component features, the whole
frequency band is decomposed using ERB like WP
decomposition proposed by Sahu et al. (2014) as shown
in Fig. 5.

Once, the WP decomposition is performed, energy in
each  frequency  band  is  calculated  and  the  log  of
weighted energy is applied resulting in 24 cepstral
coefficients. Discrete Cosine Transform (DCT) is applied
to decelerate the 24 coefficients of filter bank energies.
Variance Feature (VF) of the 24 coefficients has been
calculated. Finally, a total of 25 features that describe the
low  resonance  component  are  obtained  per  each
frame.  We  tried  different  types  of  wavelet  filters  with
different  degrees  such as Daubechies and Coifflet filters.

Fig. 5: The 24 sub-band wavelet packet tree based on
ERB scale (Sahu et al., 2014)

Experiments  showed  that  the  coif5  filter  gives  the
best performance in terms of classification accuracy;
therefore,  it  is  adopted  in  all  the  reported  results
below.

The quality factor of the coifflet5 was Q = 1.4,
indicating that the features extracted using these filters
would capture the characteristics of the low-resonance
components.

As for the high resonance component feature
extraction stage, we first apply the Tunable Q factor
Wavelet (TQWT) filters to the preprocessed speech
frames. These filters are implemented by iteratively
applying a two-channel filter bank (Selesnick, 2011). A
high quality factor Q = 5 was selected to capture the
characteristics of the high-resonance components. The
over sampling coefficient (redundancy coefficient)
according to Selesnick (2011a, b) must verify r$3, the
chosen value is r = 3. Thus, the scaling parameters β and
α (based on the previous values for Q and r) are:

2 2
0.3333 1- 0.89

Q+1 6 r


      

The maximum number of the decomposition levels J
of the wavelet transform is given by Selesnick (2011a, b):

 
 max

log N/8
J

log 1/

 
  

  

254



Res. J. Applied Sci., 14 (8): 250-257, 2019

H (j) ( )1 ω

0 (1- )  β α πj-1 α πj-1 π
ω

LPS

HPS ω(2)

ω(1)

Stage 15 HPS
ω(15)

Stage 2
Satge 1

x(n)

Fig. 6: Filter H1(j) with the tunable quality factor of phase
j (Selesnick, 2011a, b)

Fig. 7: Distribution of wavelet filter bank (Selesnick,
2011)

where, N is the number of samples per frame. In our
experiments N = 384 (as the sampling frequency is 16
KHz and the frame size is 24 msec). Therefore, Jmax = 23.
We have tested different values {12, 15, 18, 20, 22} for J
and found that J = 15 gives the best performance in terms
of classification accuracy. This value is chosen in our
experiments for the reported results.

Figure 6 shows the frequency response of filter H1(j)

with the tunable Q factor of phase j. Figure 7 shows how
the levels of the wavelet filter bank are distributed.

As in the case of a low-resonance, the energy in each
15 sub-band signals (ω(1), ..., ω(15)) which is the output of
the 15 tunable Q factor wavelet filters is calculated and
the log of weighted energy is applied resulting in 16
cepstral coefficients. Discrete Cosine Transform (DCT) is
applied to decelerate the 16 coefficients of filter bank
energies. Variance Feature (VF) of the 16 coefficients has
been calculated. Finally, a total of 17 features that
describe the high resonance components are obtained per
each frame. At the last, the two feature vectors for both
low and high resonance components were concatenated to
obtain single feature vector with 42 coefficients.  

RESULTS AND DISCUSSION

Experiments
TIMIT Dataset: For all the experiments, the TIMIT
corpus was adopted presented in this research. TIMIT is
widely used as a standard corpus to evaluate the
performance of new acoustic features in ASR because it
is a phonetically balanced database and has good
coverage of speakers and dialects. All of these make
TIMIT a sufficiently challenging corpus to evaluate new
ASR methods which justifies its wide adoption by the
community. The TIMIT corpus consists of 6300
utterances  for 8 major dialects of the United States. There

Table 1: Phonemes recognition rate of studied features in clean
environment

Feature WERBC TQWTC RWDCC MFCC
Recognition rate (%) 75.02 71.26 76.63 74.28

are 630 different speakers, each one speaking 10
sentences. For this experiment, a subset of 39 English
language phonemes with 1000 utterances from complete
training set were used for training have been carried out.
Also, all phonemes with 100 utterances from complete
test set were used for testing. The speech signal was pre-
emphasized to ensure that all formants of acoustic signals
have similar amplitudes, so that, they get equal
importance in subsequent processing stages.

Experimental results: Experiments were performed on
a subset derived from the TIMIT database which includes
the 39 English language phonemes. The performance of
the proposed RWDCC features was compared after
implementing the proposed algorithm in terms of
phoneme recognition rate with the performance of three
other acoustic features: MFCC features, the WERBC
features  proposed  by  Sahu  et  al.  (2014)  and  the
TQWTC-based features proposed by Selesnick (2011).
Experiments are conducted in three different
environments:

C Clean environment without noise
C In the presence of white noise

An environment with unstable noise. Where six types
of non-stationary noise were tried from a dataset available
at:

C The noise of chatter
C F16 aircraft noise
C Tank noise
C Factory noise
C Noise of HF radio channel
C Volvo engine noise

Table 1 shows a comparison between the
performance of feature types without noise in terms of
recognition rate while Table 2 shows a comparison
between performance of feature types in the seven studied
types of noise.

From Table 1, we note that in the absence of noise,
the proposed RWDCC features outperform, in case of
recognition rate, wavelet-packet based WERBC and
TQWTC by a large proportion. The RWDCC outperform
WERBC by (1.6%), TQWTC by (5.4%) and MFCC by
(2.4%). We also note that the WERBC features
outperform TQWTC by 3.7%.

Table 2 shows that if white noise is present, the
proposed RWDCC algorithm outperforms the studied
features   extraction   algorithms   for   all    noise    levels.
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Table 2: Phonemes recognition rate in the case of white noise
Noise type dB WERBC TQWTC RWDCC MFCC
White noise -5 52.75 52.83 55.79 53.23

0 58.52 59.48 59.64 57.88
5 64.41 62.36 65.61 61.96

10 66.85 65.57 67.73 65.89
15 70.62 66.69 71.90 65.97

Table 3: Phoneme recognition accuracy rate for the different features in
the presence of 6 different kinds of non-stationary noise

Noise type dB WERBC TQWTC RWDCC MFCC
Volvo -5 71.90 69.49 72.38 66.13
1 0 72.31 69.73 72.94 66.85

5 73.26 71.12 74.78 64.93
10 74.22 70.78 74.06 65.17
15 73.53 70.94 74.78 66.77

Babble -5 51.63 51.71 53.07 50.26
2 0 59.08 59.64 58.68 54.75

5 64.21 62.92 62.92 61.24
10 68.21 67.81 69.89 63.48
15 72.06 68.85 71.98 67.17

F16 -5 50.91 53.47 53.39 55.71
3 0 58.36 57.55 59.64 57.55

5 63.32 62.04 65.33 63.72
10 67.89 66.37 68.37 65.33
15 69.01 67.81 71.52 66.53

Factory1 -5 48.66 48.90 50.14 48.82
4 0 54.51 55.15 55.39 54.43

5 59.64 60.68 61.86 59.24
10 65.65 64.04 67.17 62.84
15 68.61 68.13 71.58 65.65

Hf channel -5 56.03 53.55 56.91 56.35
5 0 62.28 57.71 62.52 59.32

5 64.13 62.12 62.36 62.84
 10 65.57 65.01 68.29 63.64
Leopard -5 66.93 68.13 68.61 63.08
6 0 70.62 69.41 70.13 65.41

5 71.42 70.94 73.18 67.17
10 71.82 70.94 73.56 66.53
15 73.42 71.02 74.06 66.85

Bold values are significent

Fig. 8: Phonemes recognition rate for studied features
and suggested features of RWDCC in the case of
white noise for different noise levels

Figure 8 shows a comparison of the performance of the
three studied features compared with the proposed
RWDCC features in the case of white noise. We note that
the proposed features show the best performance in terms

of recognition accuracy. Table 3 shows the phoneme
recognition accuracy rate using different acoustic feature
compared to the propose RWDCC  features  in  case  of
six different non-stationary
noise types taken from. Results show that the proposed
features outperform all other feature for all SNR level.
That in the case of Volvo noise and factory noise, the
proposed feature extraction algorithm outperforms the
studied features for all noise levels. In addition, the
performance in factory noise is the worst of all studied
features of all noise types. Performance in the case of
Volvo noise and tank noise is close in the low noise levels
(10 and 15 dB)while the performance is worse in case of
tank noise at higher noise levels (-5 dB).

CONCLUSION

In this study, we proposed a new speech
parameterization method based on two wavelet
decompositions one using high Q wavelet filters and
another using low Q wavelet filters. The tow
decomposition is concatenated to have one feature
vectors. Results show that the proposed features
outperform the classical MFCC feature and two other
wavelet-based features (WERBC and TQWTC) in clean
environment and in the presence of white noise and other
6 non stationary noises in terms of phoneme recognition
rate which make the proposed features suitable for ASR
in noisy environment.
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