Research Journal of Applied Sciences 13 (9): 522-531, 2018
ISSN: 1815-932X
© Medwell Journals, 2018

Detecting Duplicate Bug Reports Techniques

'Zahra Aminoroaya, “Behzad Soleimani Neysiani and *Mohammad Hossein Nadimi Shahraki
"Department of Software Engineering,
Allame Naeimi Higher Education Institute, Naein, Isfahan, Iran
*Department of Software Engineering, Faculty of Electrical and Computer Engineering,
University of Kashan, Kashan, Isfahan, Iran
*Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University,
Najafabad, Isfahan, Iran

Abstract: With the advent of the Internet and the spread of computer users, many applications have been
developed that are used by millions of user’s everyday tasks like office applications or web browsers. Software
companies spend over 45% of cost in dealing with software bugs. An inevitable step of fixing bugs is bug triage
which aims to correctly assign a developer to a new bug. Bug-tracking and issue-tracking systems tend to be
populated with bugs, issues or tickets written by a wide variety of bug reporters with different levels of training
and knowledge about the system being discussed. Many bug reporters lack the skills, vocabulary, knowledge
or time to efficiently search the issue tracker for similar issues. As a result, issue trackers are often full of
duplicate issues and bugs and bug triaging is time consuming and error prone. Software bugs occur for a wide
range of reasons. Bug reports can be generated automatically or drafted by user of software. Bug reports can
also go with other malfunctions of the software, mostly for the beta or unsteady versions of the software. Most
often, these bug reports are improved with user contributed accounts experiences as to know what i fact faced
by him/her. Addressing these bug’s for the majority of effort spent in the maintenance phase of a software
project life cycle. Most often, several bug reports, sent by different users, match up to the same defect.
Nevertheless, every bug report 1s to be analyzed separately and carefully for the possibility of a potential bug.
The person responsible for processing the newly reported bugs, checking for duplicates and passing them to
suitable developers to get fixed is called a Triager and this process is called Triaging. The utility of bug tracking
systems is hindered by a large number of duplicate bug reports. ITn many open source software projects as many
as one third of all reports are duplicates. This identification of duplicacy in bug reports 1s time-taking and adds
to the already high cost of software maintenance. To decrease the time cost in manual work, text classification
techniques are applied to conduct automatic bug triage. This study presents an overview of the works done
to better detect duplicate bugs have been conducted on open source data set.

Key words: Bug report analysis, duplicate bug report detection, feature extraction, information retrieval, text
mining, domain knowledge, execution information, classification

INTRODUCTION software development projects. It may be considered as

a type of 1ssue tracking system. Most of the bug tracking

Due to complexities of software systems, software
bugs are prevalent. To manage and keep track of bugs
and their associated fixes, bug tracking system like
Bugzillal has been proposed and 1s widely adopted. With
such a system, end users and testers could report bugs
that they encounter. Developers could triage, track and
comment on the various bugs that are reported. A bug
tracking system or defect tracking system 1s a software
application that keeps record of reported software bugs in

systems, such as those used by many open source
software projects, allows end-users to enter bug
reports directly (Zimmermann et al., 2009). Other systems
are used only mside a company or orgamization involved
in doing software development. In general bug tracking
systems are integrated with other software project
management applications.

The database of reports 13 critical for many software
projects as it describes both bugs that need to be fixed

Corresponding Author: Zahra Aminoroaya, Department of Software Engineering, Allame Naeini Higher Education Institute Naein,

Isfahan, Iran

Res. J. Applied Sci., 13 (9): 522-531, 2018

and the new features to be added. Open source software
projects typically have a bug repository that allows both
developers and users to post problems encountered with
the software, suggesting of possible enhancements and
commenting upon existing bug reports. Many popular
open source projects get vast number of bug reports
(Sun et al, 2011).

As new software systems are getting larger and more
complex every day, software bugs are an inevitable
phenomenon. Software development is an evolutionary
process where after the first release, bug report
submissions by the users and testers come through. Bugs
arise during different phases of software development,
from inception to transition. They occur for a variety of
reasons, ranging from ill-defined specifications to
carelessness to a programmers misunderstanding of the
problem, technical issues, non-functional qualities, corner
cases, Also, software bugs are considerably
expensive. Existing research indicates that software bugs
cost United States, billions of dollars per year (Sun ef al.,
2011).

Defect (also referred to as issue or bug) reporting is
an ntegral part of a software development, testing and
maintenance process. Typically, bugs are reported to an
issue tracking system which is analyzed by a Triager (who
has the knowledge of the system, project and developers)
for performing activities like; Quality check to ensure if
the report contains all the useful and required information,
duplicate detection, routing it to the appropriate expert for
correction and editing various project-specific metadata
and properties associated with the report (such as current
status, assigned developer, severity level and expected
time to closure). Tt has been observed that often a bug
report submitted by a tester 1s a duplicate (two bug
reports are said to be duplicates if they describe the same
1ssue or problem and thereby have the same solution to fix
the issue) of an existing bug report. Studies show that the
percentage of duplicate bug reports can be up-to 25-30%.
This can sigmficantly hamper the bug fixing process and
product release.

Recognizing bugs as a “Fact of life”, many software
projects provide methods for users to report bugs and to
store these bug/issue reports in a bug-tracker (or
1ssue-tracking) system. The issue-tracking systems like
Bugzilla and Google’s issue-tracker enable the users and
testers to report their findings n a unified environment.
These systems enable the reporters to specify a set of
features for the bug reports such as the type of the bug
report (defect or feature request), the component in the
system the report belongs to, the product the report is
about, etc. Then, the developers will select the reported
bugs considering some of their features. The selected bug

etc.

523

reports are handled with respect to their priority and
eventually closed. The issue-tracking systems also
provide users with the facility of tracking the status of
bug reports. Addressing bug reports frequently accounts
for the majority of effort spent in the maintenance phase
of a software project’s life-cycle. This 15 why, researchers
have been trying to enhance the bug-tracking systems to
facilitate the bug-fixing process.

For most of the complex software, more bugs are
reported than can be easily handled. Each report needs to
be triaged by a person, known as triager (Anvik ef al.,
2006) to determine 1f reports are meamngful and if it does,
it must be assigned to an suitable developer for further
handling. Moreover, one of the most important task of
triager is to identify bug reports if these are duplicates of
some previously submitted report related to some still-
uncovered bug. In large projects where there are
thousands of reports to search through, identifying
duplicate bugs can be an expensive task. The use of a bug
repository can improve the development process in a
number of ways:

Tt allows the evolution of the project to be tracked by
knowing how many reports are outstanding

o Tt allows developers who are geographically
distributed to communicate about project
development

It enables approaches to determine which developers
have expertise in different areas of the product

It can help improve the quality of the software
produced and

It can provide visibility to users about the status of
problem reports

The bug repository can thus provide a location for
users, quality assurance teams, developers and managers
to engage in a user-integrated development process.
However, the use of a bug repository also has a cost.
Developers can become over-whelmed with the number of
reports submitted to the bug repository.

Each report is triaged to determine if it describes a
valid problem and if so how the report should be
categorized for handling through the development
process. When developers are overwhelmed by reports,
there are two effects. The first is that effort is redirected
away from improving the product to managing the project.
If a project gets thirty reports a day and it takes 5 min to
triage a report then over two-person hours per day are
spent triaging reports. If all of these reports lead to
improvement in the code, this might be satisfactory cost
to the project. However, for some projects, less than half
of submitted reports lead to code improvements. For
example, it was found that the Eclipse project had 5515

Res. J. Applied Sci., 13 (9): 522-531, 2018

Newv bug from a
user with can confirm
or a product without
unconfirmed state

[Unconfirmed]

Bug confirmed or
receives enough votes,

l

Bug is reopened
was never confirmed

e

Developer takes
possession

Ownership
is changed

Developer takes
possession

Development is
finished with bug

Possible resolution
Fixed

Duplicate

Wontfix

Works for me
Invalid

Y

Development is
finished with bug

Developer takes
possession

Resolved

Bug is closed

Issue is
resolved

QA not satisfied
with solution

QA verifies
solution worked

Bug is reopened (

[Reopened J:

Bug is reopened

Bug is closed

Verified

L

Closed

[

~N

Fig. 1: Life cycle of a bug (Wang et al., 2008)

unproductive reports m 2004 (Alipour ef al., 2013). The
second effect 1s that reports may not be addressed in a
timely fashion. If the number of reports that enter the
repository is more than can be reasonably triaged within
a suitable amount of time for the project then some reports
may languish in the repository as other reports
demanding more immediate attention take precedence. For
an open-source project where the responsiveness of the
development team to the community 1s often measured by
how quickly reports are addressed and the number of
outstanding reports, the rate at which reports are triaged
can be an important factor in determining how well the
project refinement is taking place. For example,
Crowston ef al., Berry and Castellanos, found that a

524

measure of success for an open source project is the rate
that users submitted bug reports and participated in
project mailing lists. The person who triages the report,
should have two goals. The first goal is to have the
repository contain the smallest set of best reports for the
project. The smallest set of best reports 1s desirable
because reports typically enter the repository from
various sources such as members of a technical support
division, other developers and the user commumty
(Fig. 1). Unfortunately with so many diverse sources of
reports, some of the reports are not meaningful. For
example, on a large project with many team members,
several developers may submit a report describing the
same bug. These duplicate reports need to be gathered

Res. J. Applied Sci., 13 (9): 522-531, 2018

together, so that, development effort is not wasted by
having two developers solve the same problem. A triager
also needs to filter reports that do not adequately enable
a bug to be reproduced or that describe a problem whose
cause is not the product but somewhat which is beyond
the control of the developers such as the operating
system. Sometimes, a triager also needs to filter the
reports that are spam.

MATERIALS AND METHODS

Bug report duplication: Addressing these bugs
frequently accounts for the majority of effort spent in the
maintenance phase of a software project’s life-cycle. This
15 why, researchers have been trying to enhance the
bug-tracking systems to facilitate the bug-fixing process
(Zimmermann et al., 2009, Sun et al., 2011). For several
reasons, such as lack of motivation of users and defects
m the search engine of the bug-tracking systems
(Sun ef al., 2011), the users of software systems may
report some bugs that already exist in the bug-tracking
system. These bug reports are called “Duplicates”. The
word duplicate may also represent the bug reports
referring to different bugs in the system that are caused
by the same software defect. Researchers have addressed
several reasons for duplicate bug reports (Sun et al.,
2011); Inexperienced users, poor search feature of bug-
trackers and mtentional/accidental re-submissions for
reporting duplicate bugs, etc.

Hence, there is always need for inspection to detect
whether a newly reported defect has been reported before.
If the mcoming report 15 a new bug then it should be
assigned to the responsible developer and if the bug
report 1s a duplicate, the report will be classified as a
duplicate and attached to the original “Master” report.
This process 1s referred to as triaging.

Tdentifying duplicate bug reports of great
importance, since, it can save time and effort of
developers. Recently, many researchers like
Bettenburg et al. (Sun et al., 2011) have focused on this
problem. Here are some of the important motivations for
detecting duplicate bug reports:

18

Duplicate bug reports may be assigned to different
developers by mistake which results

In addition when a bug report gets fixed, addressing
the duplicates as mdependent defects 1s a waste of
time

Finally, identifying duplicate bug reports can also be
helpful in fixing the bugs, since, some of the bug
reports may provide more useful descriptions than
their duplicates (Sun ef al., 2011)

525

When the number of daily reported bugs for a
popular software 1s taken into consideration, manually
triaging takes a significant amount of time and the results
are unlikely to be complete. For instance in Eclipse, two
person-hours are daily being spent on bug triaging
(Zimmermann et af., 2009). Also, Mozilla reported m 2005
that everyday”, almost 300 bugs appear that need
triaging” (Lazar et al., 2014).

A number of studies have attempted to address this
1ssue by automating bug-report deduplication. To that
end, various bug-report similarity measurements have
been proposed, concentrating primarily on the textual
features of the bug reports and utilizing Natural Language
Processing (NLP) techniques to do textual comparison
(Lazar et al., 2014). Some of these studies also exploit
categorical features extracted from the basic properties of
the bug reports (i.e., component, version, priority, etc.)
(Sun et al., 2011). Same of these studies result in a method
that automatically filters duplicate reports from reaching
triagers. While, some other techrmiques provide a list of
similar bug reports to each incoming report. Accordingly,
rather than checking against the entire collection of bug
reports the triager could first inspect the top-k most
similar bug reports returned by this method (Sun ef af.,
2011).

RESULTS AND DISCUSSION

Dataset: As mentioned earlier, four large bug repositories
are used in this study. These include: Android, Eclipse,
Morzilla and OpenOffice bug repositories. Android is a
Linux-based operating system with several sub-projects.
The Android bug repository used in this study
involves Android bug reports submitted from
November 2007- September 2012. After filtering umusable
bug reports (the bug reports without necessary feature
values such as bug ID), the total mumber of bug reports is
37536 and 1361 of them are marked as duplicate. The
Eclipse, Mozilla and OpenOffice bug repositories
utilized 1n this study are adapted from Sun ef af. (2011).
Eclipse is a popular open source integrated development
environment. It can be used to develop applications in
Tava and some other languages eclipse bug repository
includes the bug reports reported in year 2008. After
filtering unusable bug reports, the total number of reports
15 43729 and 2834 of them are marked as duplicate.
Open office is a well-known open source rich text editor.
Open office contains several sub-projects mcluding a
word processor (writer), a spreadsheet (Calc), a
presentation application (Impress), a drawing application
(draw), a formula editor (Math) and a database
management application. The open office bug repository
includes 29455 bug reports in which there are 2779 bug

Res. J. Applied Sci., 13 (9): 522-531, 2018

Table 1: Field of a hug report

Bug Id: ID of the bug report

(Issues) title: title of the bug report

Priority: The priority denotes how soon the bug should be fixed. This

attribute typically varies between P1 to P5 where P1 denotes the highest priority

Type: The type of the report: defect, enhancement, task, feature
Component: the relevant subsystem of the product for the reported bug

Product: the particular software application the bug is related to
Open date: Date at which report is submitted

Bug status: The attribute indicates the current state Of a bug. The value of this
attribute varies between unconfirmed, new, assigned, reopened, ready,
resolved, verified

cc: Users who are interested in the progress of this bug

Operating system (op-sys): the operating sy stern against which the bug is reported

Short._desc: a one-line surmmary describing the bug
Hardware: The hardware that the operating system is installed on it

Resolution: This attribute indicates what happened to this bug. The value
of this attribute varies between fixed, invalid, wontfix, duplicate,
worksforme, incomplete

Cormpany: The compaity bug occurred

Severity: the impact of the bug on the software system. This attribute varies
between trivial, minor, normal, major, critical and blocker

Sumnmary: A brief description of the problem

Description: A detailed declaration of the problem which may include
reproduction steps and stack traces

Merge ID: If the report is a duplicate report, this field shows the ID of the
report which the bug report is duplicating

Close date: Date at which report is closed

Assigned to: the identifier of the developer who got assigned the bug
Version: the version of the product the bug was found in

Attachment: The attached file such as an bug image file or an bug report

bug reports marked as duplicate. Mozilla is a free software
commumty best known for producing the Firefox web
browser. In addition, Mozilla produces Thunder bird,
Firefox Mobile and Bugzilla. The Mozilla bug repository
exploited in this study contains 71292 bug reports (after
filtering junk bug reports) in which 6049 of them are
marked as duplicate (Anvik et al., 2006). Following are
some facts on the volume of bug reports submitted to
defect tracking systems: 13.016 bug reports were filed
from Jun 4-5 between the release of eclipse platform
version 3.0 and 3.1; Averaging 37 reports per day with a
maximum of 220 reports in a single day. Number of bugs
reported for Mozilla project = 51.154 during the period
2002-2006.

Fields of datasets: As indicated in Table 1, the bug
reports exploited include the followmg features:
description, summary, status, component, priority, type,
version, product and etc, ..., According to need, these
systems can even add custom mformation to the software
system in which user data are received and stored. This
information is used to detect duplicate bug reports. For
example the status feature can have different values
including “Duplicate” which means the bug report is
recognized as a duplicate report by the triager.

Features extraction: Bug repositories are the systems
which manages the bug reports sent by a broad
commumty of users. Usually, the users have different
knowledge, skill and vocabulary level to formulate report
about a bug. Consequently, a bug tracking system 1s full
of reports many of which are duplicates of each other and
bug triaging 1s time consuming and error prone. Triagers
can become overwhelmed by the number of reports added
to the repository. Time spent in triaging also typically
diverts valuable resources away from the improvement
of the product to the managing of the development
process.

526

According to the types of data in the bug reports is
quite clear that these data are important to determine the
similarity between bug reports. For this purpose, methods
of data mimng, text mining, information retrieval and
natural language processing in the field to determine
similarity measurements among the bug reports. Given
that there are several ways to extract features and
combines text has a number of features are extracted from
the text reports.

Types of features: In terms of performance, features
extracted from data set divided
categories: categorical features, text features, semantic

into four distinct

features and structural features. This features following
explanation will be given.

Categorical features: To compare the categorical features
of a pair of bug reports. This measure the similarity
between them based on their basic features (component,
type, priority, product and version) indicated in Table 1,
duplicate bug reports have similar categorical features.
This motivates the use of categorical features in
bug-deduplication.

In the following indicates the textual and categorical
similarity measurement formulas applied mn types of
methods. These formulas are adapted from Sun et al.
(2011) research’s. Here d, q are each about to send an bug
report. In general it can be said that categorical features
using attributes in the database table is extracted:

1, if d.prod = g.prod

Feature, (d.q) = {0 otherwise

1, if d.comp = ¢.comp

Feature, (d’ q) - {0 otherwise

Res. J. Applied Sci., 13 (9): 522-531, 2018

1, if d.type = q.type
Feature, (d,q) - {0 otherwise
Feature, (d.q) = __
&4 1+‘d.prio— q.pn'o‘
1

Feature;(d,q)=~ ——
eature; (d.q) 1+|d.vers — q.vers|

Textual features: The exact number of words and same
terms calculate with using textual similarity metrics and
graph clustering algorithms to determine the duplication.
In order to accurately, most of these features are usually
redundant and widely used conjunctions and words are
deleted, so, as to prevent the creation of similar meamng
between the reported bugs. In following are a few features
extracted from the data bug are reported. BM25 is a
measure of the similarity of text and d, q are each about to
send a bug report (Sun et af., 2011):

Feature, (d,q) =BM25_, (d, q)/ /of unigrams
Feature,(d,q) =BM25_, (d, q)//of biograms

BMZ25F to compare long queries such as bug reports
descriptions. This metric is based on TF-IDF weighting
technique. BM25F is designed for short queries which
usually have no duplicate words. For example, the queries
mn search engines usually mclude fewer than ten distinct
words. However in the context of duplicate bug report
retrieval, each query is a bug report. The query is
structured such that it contains a short summary and a
long description and it can sometimes be very long:

TF, (d, t)

BM25E,, (d, q) = 3 IDF{t)jx—22
eXt(’q) Z ()XK1+TFD(d, t)x

tedmg

Q

In equation above for each shared term t between a
document d and a query ¢, the following components are
calculated: One is the TFD (d, t) of a term t in a document
d which 1s the aggregation of the importance of t in each
textual field of d. Another one 18 WQ that involves weight
from the query computed by TFQ (g, t). The last one is the
IDF (t) which has an inverse relationship with the
frequency of a term t across all the documents i the
repository.

Feature engineering and extraction can be done to
find the similarity (or dis-similarity) between two reports.
Limited features make it hard to differentiate between two
contrasting datasets; Pawrs that are duplicates and pairs

527

Table 2: Category in the software dormain

Categories Software domain
1 Efficiency

2 Functionality

3 Maintainability
4 Portability

5 Reliability

6 Usability

that are non-duplicates. Hence, a rich enough feature set
15 needed to make duplicate bug report retrieval more
accurate. Textual similarity can be given in terms of
features.

Semantic features: Feature extraction and siumilarity
computation (semantic and lexical) between two bug
reports is central to the problem of duplicate detection.
Extracting discriminatory features and important
indicators from bug description is key to the performance
of any duplicate bug report detection system.

Structure features: A bug report 1s possible contaming
information may also call stack methods to accurately
determine which part of the application bug occurred and
this bug has occurred during what calling series.
Structural features to get patterns are frequent m the call
stack, so in terms of the similarities between the pattern of
call stack to achieve the similarity of the two reports.

Contextual features: These features are usually trying to
get the topic and concept of a report. For example are
prepared a dictionary of word related to features of
software quality such as: efficiency, functionality,
maintamability, portability reliability and usability and
review the use of these words in the context report and on
what context it 1s determined that the bug report related
software. Key words related to the software field has been
shown m Table 2. Considering the dictionary 1s created,
it can be achieved in a context similar reports.

Each contextual data-set adds some new contextual
features to each bug report. The number of these
contextual features 1s equal to the number of word lists
included in the contextual data-set. These contextual word
lists elaborate the raw data in the primitive bug reports
before being used for the bug report deduplication
process. The contextual word lhsts are showed below
(Lazar et al., 2014):

Architecture words

Non-Functional Requirement (NFR) words
LDA topic words

Random English words

General software engineering

Android development

Res. J. Applied Sci., 13 (9): 522-531, 2018

Eclipse documentation
Open Office documentation
Mozilla documentation
Labelled LDA

Related work: Tn this study, we review existing work on
modeling bug data, bug triage and the quality of bug data
with defect prediction.

In Ahmed Lamkanfi (Runeson et al., 2007) study’s
they propose the eclipse and mozilla defect tracking
dataset, a representative database of bug data, filtered to
contain only genuine defects (1.e., no feature requests)
and designed to cover the whole bug-triage life cycle (i.e.,
store all intermediate actions). Our have used this dataset
ourselves for predicting bug severity for studying bug
fixing time and for identifying erronecously assigned
components. Sharing these data with the rest of the
community will allow for reproducibility, validation and
comparison of the results obtamed in bug-report analyses
and experiments.

Talbert and Weimer (2008) have introduced a classifier
for incoming bug reports which combines the categorical
features of the reports, textual similarity metrics and graph
clustering algorithms to identify duplicates. In this
method, bug reports are filtered based on an automatic
approach. Their method is evaluated on a data-set of
29000 bugs from Mozilla Firefox. As a result, development
cost was reduced by filtering out 8% of duplicate bug
reports.

Wang et al. (2008) and Nguyen et al. (2012) used
natural language mformation accompanied by execution
mformation to detect duplicate bugs, evaluated on the
Firefox and Eclipse bug repositories. Reports are divided
mto three groups: Run-time errors, feature requests and
patch errors. They achieve better performance than
relying solely on natural language information. This
approach shows some promise behind using contextual
information Lotufo et al. (Ma et al., 2007) studied how a
triager reads and navigates through a bug and made a bug
summarizer using this research. They successfully
evaluated the quality of their summarizer on a wide survey
of developers.

Ashish Sureka study’s (Sun ef @/, 2011) presents an
approach to compute text similarity between two bug
reports to assist a Triager in the task of duplicate bug
report detection. The central idea behind the proposed
approach 1s the application of character n-grams as
low-level features to represent the title and detailed
description of a bug report. The advantages of the
approach are language independence as it does not
require language specific pre-processing and ability to
capture sub-word features which s useful m situations

528

requiring comparison of noisy text. The approach is
evaluated on a bug database consisting of more than
200,000 bug reports from open source Eclipse project. The
recall rate for the Top 50 results 15 33.92% for 1100
randomly selected test cases and 61.94% for 2270
randomly selected test cases with a title to title similarity
(between the master and the duplicate) of more than
a pre-defined threshold of 50.

Research in duplicate report detection has primarily
focused on word frequency based similarity measures
paymng little regard to the context or structure of the
reporting language. Thus, m large repositories, reports
describing different issues may be marked as duplicates
due to the frequent use of common words. In Sean
Banerjee (Zimmermann et al., 2009) study’s, we present
factor LCS, a methodology which utilizes common
sequence matching for duplicate report detection. They
demonstrate the approach by analyzing the complete
Firefox bug repository up until March 2012 as well as a
smaller subset of Eclipse dataset from January 1,
2008-December 31, 2008. They achieve a duplicate recall
rate above 70% with Firefox which exceeds the results
reported on smaller subsets of the same repository.

By Alipour et al. (2013) study’s, they have exploited
the domain knowledge and context of software
development to find duplicate bug reports By improving
bug deduplication performance companies can save
money and effort spent on bug triage and duplicate bug
finding. They use contextual word lists to address the
ambiguity of synonymous software-related words within
bug reports written by users who have different
vocabularies. They replicated (Sun e af., 2011) method of
textual and categorical comparison and extended it by
adding ther contextual similarity measurement
approach. They have utilized the contexts of Android
architecture, Non-Functional Requirements (WFRs) and
the Android LDA-extracted topics (extracted by TLDA and
Labeled-L.LDA). By including the overlap of context as
features they found that our contextual approach
improves the accuracy of bug-report deduplication by
11.55% over Sun et al. (2011) method. This implies that by
addressing the context of software engineering and
relying on prior knowledge of software development
they can boost bug de-duplication performance they
conclude that to improve duplicate bug-report detection
performance one should consider and not ignore, the
domain and context of software engineering and software
development.

Bug reports typically comprise a problem description
in natural language text and often, structural elements
such as patches, stack traces and source code. Research
to date using of bug reports have treated all contents as

Res. J. Applied Sci., 13 (9): 522-531, 2018

natural language text but research can potentially benefit
from treating such elements differently. In Bettenburg and
etc study’s developed a tool, infoZilla that extracts these
elements from the reports with near perfect accuracy, as
demonstrated by their evaluation of 800 ECLIPSE bug
reports. Access to such piecewise elements from bug
reports opens doors to several possibilities for research,
for example, assignment of bug reports to developers and
detection of duplicates and more.

In general, researches done in the field of detection
duplicate bug reports can be categorized in four areas that
in the following explained.

Information Retrieval (IR) techniques: Information
retrieval 1s the activity of obtaimng the needed
information from a collection of information resources. IR
techniques are applied on a broad spectrum of different
scopes from image retrieval to web search. Here, we
indicate some of the most frequently used IR techniques.
Vector Space Model (VSM) is one of the tools exploited
repeatedly in information retrieval. This model is
commonly utilized for the purpose of comparing textual
queries or documents. One of the outstanding methods
of forming a weight-vector out of a text is the Term
Frequency-Inverse Frequency (TF-IDF).
TF-IDF 15 a weighting factor which denotes how
unportant a word 1s to a document in a repository of
documents. The basic formulas for the TF-IDF are as

Document

follows:
*
tf(t, d) = 0.5+ 0.57f(td)
max{f(w,d) We d}
idf (t, d)= logL
’ ‘{d;D;t S d}‘
tf—if d(t,d, D)= tf(t,f)*idf(t,d)
Where:
f(t,d) = The frequency of the term t in the document
d
idf (t, D) = Shows if the term t is common across the
documents

df (t, D) = Divides the total number of the documents
by the number of documents containing
term t

Information retrieval techniques are frequently
applied to resolve the software engineering problems.
These techniques pertain to the maintenance and
evolution phases of the software life-cycle. These
technicques are exploited for variant issues including

529

feature/concept location, fault prediction, developer
identification, comprehension, impact analysis,
traceability links and refactoring.

Stack traces techmiques: In this approach, for each
incoming bug report, two different similarities are
calculated between this report and all the existing ones.
The first similarity metric is the Natural-Language-based
Similarity (NL.-S) in which the summary and description of
the bug reports are converted to weight vectors
using TF-IDF and compared with each other using
cosine similarity metric. The second one is called
Execution-information-based Similarities (E-3) in which a
vector space model 1s used to calculate the siumilarity of
the bug reports, based on the execution information.
However n this similanty measurement, only the methods
that are invoked during the run are studied without
considermg how many times each method has been
invoked. Also, the canonical signature of each method is
counted as one index term. Thus, the weight vectors for
the execution information are created using TF-IDF and
the similarities are measured by the cosine similarity
metric. Finally, a combination of NLS and E-S contribute
inranking the most similar reports to a particular incoming
bug report. The experimental result indicates that this
approach 1s able to detect 67-93% of duplicate bug reports
1n the Firefox bug repository (Banerjee et af., 2012).

Textual and categorical similarity techniques: Jalbert and
Weimer (2008) and Runeson et al. (2007) have proposed
a technique that automatically classifies and filters
arriving duplicate bug reports to save triager’s time. Their
classifier combines the swface features duplicate bug
reports to save triager’s time. Their classifier combines the
surface features of the bug reports (non-textual features
such as severity, operating system and number of
associated patches), textual similarity measurements and
graph clustering algorithms to identify duplicate bug
reports. This classifier applies a linear regression over the
features of the bug reports. Each document 1s represented
by a vector in which each vector 15 weighted utilizing the
following formula W, = 3+2 log; (freq) m which the W 1s
the weight of word i in the document and freq is the count
of word i in the document. The textual similarity between
every two documents is calculated by the cosine similarity
metric. The result of this similarity measurement is the
basis for inducing a similarity graph. And a clustering
algorithm is applied on the graph. Finally, the surface
features are exploited to identify the duplicate reports.
The experiments are performed on a subset of Mozlla bug
reports. As the authors report, this approach can detect
and filter 8% of duplicate reports automatically:

Res. J. Applied Sci., 13 (9): 522-531, 2018

Cosine,, = 2. X,

. \/ZL(CL y XJZ:]=1(CL)

In this formula, n 1s the number of word lists of the
contextual data which 1s equal to the number of contextual
features added to each bug report. C1; and C2; are the ith
contextual features added to the first and second bug
reports n the pair, respectively.

Topic model techniques: Nguyen et al. (2012) have
proposed a novel technique called DBTM in which both
IR-based techniques and topic extraction ones are applied
to detect duplicate bug reports. To train the DBTM, the
existing bug reports in the repository and their duplication
information is utilized. For prediction, DBTM is applied to
anew bug report and uses the train parameters to estunate
the similarity between the bug report and existing reports
in terms of textual features and topics. They have also
proposed a novel LDA-based technique called T-Model
to extract the topics from the bug reports. The T-Model 1s
trained m train phase in a way that the words in bug
reports and the duplication relation among them are used
to estimate the topics, the topic properties and the local
topic properties. In the prediction phase for any new bug
report b, the T-Model takes advantage of the trained
parameters to find the groups of duplicates G that
have the most similarity with by, in terms of topics. This

Table 3: Related literature on detecting duplicate bug reports

similarity is measured using the following formula: In
which topiesim (b, b) 18 the topic proportion similarity
between the bug reports b,,,, and by

Topicsim(b,,,.G)= ;“f:f}(topicsim(bnew,bi))

In the study cited to measure the textual similarity
between the bug reports, BM25F method (Sun ef af., 2011)
is exploited. To combine topic-based and textual metrics
a machme learming techmque called ensemble averaging
is applied. Below, you can find the equation for
calculating y which is the linear combination of the two
above mentioned metrics:

y =y, toxy,

In the above function, y, and y, are textual and
topic-based metrics. Also, «, and @, control the
significance of these metrics m the duplicate bug report
identification process. These factors satisfy o +o, = 1.
This approach provides a list of top-K similar bug reports
for every new report. The authors have performed their
experiments on Open Office, Eclipse and Mozilla project
bug repositories. And reported 20% improvement in the
accuracy over the state-of-the-art.

The bug report deduplication approaches reviewed
1n this section could be divided mnto four groups. These
groups are illustrated in Table 3.

Variables/Article title

Comparison technique

Retrieval technique Evaluation metrics

Approaches applying IR techniques exclusively
Detection of duplicate defect reports using natural
language processing (Lazar et af., 2014)

Applying vector space model and cosine similarity List of candidate duplicates
metric.similarity metric considering the time frames

Recall rate

Recall rate

A discriminative model approach for accurate
duplicate bug report retrieval (Nguyen et ., 2012)

Weight similarity measurement model based, object
oriented approach for bug databases mining to detect

sirnilar and duplicate bugs [36](Ma et af., 2007)
Detecting duplicate bug report using character n-
-gram-based features.(Sun et af., 2011)

Agsisted detection of duplicate bug reports
(Anvik et al., 2006)

Stack traces hased approaches

An approach to detecting duplic ate bug reports
using natural language and execution information
(Banerjee et al., 2012)

Applying 8VM to predict duplicates based on
textual comparison metrics

List of candidate duplicates

Applying vector space model and cosine similarity Automatic filtering

metric to specify duplicates based on a specific
threshold

Constructing the character ngrams of description
and title of the reports and comparing therm
based on the number of shared character n-grams
Applying vector space model, cosine similarity
metric and clustering to identify duplicates based
on a specific threshold

Comparing bug reports textually using TF-IDF
and cosine similarity metrics as well as execution
information and combining these metrics

Textual and categorical similarity based approaches

Automated duplicate detection for bug tracking
systems (Runeson et af., 2007)

Towards more accurate retrieval of duplicate bug
reports (Sun et of. 2011; Anvik et af., 20035)

Topic model based approaches

Duplicate bug report detection with a combination
of information retrieval and topic modeling
(Jalbert and Weimer, 2008)

Applying vector space model, cosine similarity
metric, using surface features and clustering
the bug reports.

Applying a set of 7 comparisons including
BM?25F and categorical similarity metrics

Applying BM25F and LDA based topics
extraction similarity metric and combining
the metrics using ensembled averaging

List of candidate duplicates

List of candidate duplicates

List of candidate duplicates

List of candidate duplicates

List of candidate duplicates

List of candidate duplicates

Recall and precision

Recall rate

Recall and precision

Recall rate

Recall rate and Area
Under the ROC
Curve (AUC)
Recall rate and Mean
Reciprocal Rank
(MRR)

Recall rate

530

Res. J. Applied Sci., 13 (9): 522-531, 2018

CONCLUSION

Finally, a triager may mdicate that the problem will
not be fixed or that the feature will not be added to the
product. Reports meeting any of these criterion must be
identified, so that, development effort can focus on the
reports that lead to product improvements. For example,
nearly a third of the reports submitted to the Firefox
project created between May 2003 and August 2005 were
marked as duplicates (Banerjee et al., 2012). One can call
tnage decisions that result in a report being designated
as not meamngful as a repository-oriented decisions.
Generally, automatic detection of duplicate defect reports
and linking similar defect reports is a technically
challenging problem due to the following reasons:

Bug reports are expressed in natural language text.
Natural language is vast and ambiguous

The quantity of problem reports in large and complex
software setting 1s huge

Presence of poorly expressed bug reports (missing
information, noisy text) poses additional technical
challenges

REFERENCES

Alipour, A., A. Hindle and E. Stroulia, 2013. A contextual
approach towards more accurate duplicate bug report
detection. Proceedings of the TEEE 2013 10th
International Working Conference on Mining
Software Repositories (MSR), May 18-19, 2013, IEEE,
San Francisco, Califorma, USA., ISBN:978-1-4673-
2936-1, pp: 183-192.

Anvik, I, L. Hiew and G.C. Murphy, 2005. Coping
with an open bug repository. Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology
eXchange, October 16-17, 2005, ACM, New York,
USA., ISBN:1-59593-342-5, pp: 35-39.

Anvik, I, L. Hiew and G.C. Murphy, 2006. Who should fix
this bug? Proceedings of the 28th International
Conference on Software Engineering, May 20-28,
2006, ACM, New York, USA ., TSBN:1-59593-375-1, pp:
361-370.

Banerjee, 3., B. Cukic and D. Adjeroh, 2012, Automated
duplicate bug report classification using
subsecuence matching. Proceedings of the 2012 TEEE
14thInternational Symposium on High-Assurance
Systems Engineering, October 24-27, 2012, IEEE,
Omaha, Nebraska, ISBN:978-1-4673-4742-6, pp: 74-81.

531

Talbert, N. and W. Weimer, 2008. Automated duplicate
detection for bug tracking systems. Proceedings of
the TEEE International Conference on Dependable
Systems and Networks with FTCS and DCC, Iune
24-27, 2008, TEEE, Anchorage, Alaska, TSBN:
978-1-4244-2397-2, pp: 52-61.

Lazar, A., S. Ritchey and B. Sharif, 201 4. Improving the
accuracy of duplicate bug report detection using
textual similarity measures. Proceedings of the 11th
International Working Conference on Mining
Software Repositories, May 31-Tune 1, 2014, ACM,
New York, USA., ISBN: 978-1-4503-2863-0, pp:
308-311.

Ma, Y., S. Lao, E. Takikawa and M. Kawade, 2007.
Discriminant analysis in correlation similarity measure
space. Proceedings of the 24thinternational
Conference on Machine Learning, Tune 20-24, 2007,
ACM, New York, USA , ISBN:978-1-59593-793-3, pp:
577-584.

Nguyen, AT, T.T. Nguyen, TN. Nguyen, D. Lo and
C. Sun, 2012, Duplicate bug report detection with a
combination of information retrieval and topic
modeling. Proceedings of the 27th TEEE/ACM
International Conference on Automated Software
Engineering, September 3-7, 2012, ACM, New Yorl,
USA., ISBN: 978-1-4503-1204-2, pp: 70-79.

Runeson, P., M. Alexanderson and O. Nyholm, 2007.
Detection of duplicate defect reports using natural
language processing. Proceedings of the 29th
International Conference on Software Engineering,
May 20-26, 2007, Minneapolis, MN., pp: 499 -510.

Sun, C., D. Lo, 3.C. Khoo and J. Tiang, 2011. Towards
more accurate retrieval of duplicate bug reports.
Proceedings of the 2011 26thTEEE/ACM International
Conference on Automated Software Engineering,
November 6-10, 2011, IEEE Computer Society,
Washington, DC.,USA ., ISBN:978-1-4577-1638-6,pp:
253-262.

Wang, X., L. Zhang, T. Xie, I. Anvik and . Sun, 2008. An
approach to detecting duplicate bug reports using
natural language and execution information.
Proceedings of the 30thinternational Conference on
Software Engineering, May 10-18, 2008, ACM, New
York, USA., [SBN:978-1-60558-079-1, pp: 461-470.

Zimmermann, T., R. Premraj, J. Sillito and S. Breu, 2009.
Improving bug tracking systems. Proceedings of the
31st International Conference on Software
Engmeering-Compamon [CSE-Companion, May 16-
24, 2009, IEEE, Vancouver, Canada, ISBN:978-1-4244-
3495-4, pp: 247-250.

	522-531 - Copy_Page_01
	522-531 - Copy_Page_02
	522-531 - Copy_Page_03
	522-531 - Copy_Page_04
	522-531 - Copy_Page_05
	522-531 - Copy_Page_06
	522-531 - Copy_Page_07
	522-531 - Copy_Page_08
	522-531 - Copy_Page_09
	522-531 - Copy_Page_10

