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Abstract: Tn this study, we explore Machine Tearning (ML) techniques to indoor Wireless Local Area Network
(WLAN) Fingerprints (FPs) parameterisation and classification i academic environments. First, relevant indoor
location (received signal strength mdication and site specific) features were abstracted from the proposed area
of study (University of Uyo, Nigeria) in a previous research to serve as fingerprints to the current research.
Second, an unsupervised principal component analysis methodology was employed to produce Principal
Component Dominant Features (PCDFs) for the first three principal components (components with eigenvalues
of at least unity). These components revealed the degree of variances exhibited by the selected FPs. Third,
using three ML classifiers (Support Vector Machine: SVM, k-Nearest Neighbour: 1-NN, decision tree and
Adaptive Neuro-Fuzzy Inference System: ANFIS) a classification of the PCDFs was performed. Results obtained
showed that decision tree and linear SVM classifiers were excellent at predicting large datasets an mmportant
precursor to accommodating scalability in WLAN environments and areas with localisation challenges such
as difficult terrains, heavy interference and spatial or uneven distribution of wireless infrastructure as these
classifiers maintained high classification accuracies of above 90%. For small datasets, ANFIS gave good
classification accuracy when compared with other classifiers.
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INTRODUCTION

Positioning systems are usually classified based on
the target environment either as indoor, outdoor or mixed
type. Indoor positioning systems provide precise location
of structures within close proximity (of environments such
as shopping malls, airports, subways and academic
campuses). Given the complexities mherent in ndoor
environments the development of mdoor localisation
techmques are always associated with numerous
challenges such as high Non-Line of Sight (NLOS),
influence of obstacles such as walls, equipment, human
and vehicular movements, fewer dimensions, doors and
more. In outdoor positioning systems, global navigation
satellite systems such as the Global Positioning System
(GPS) have been consistently used in a wide range of
applications including tracking and asset management,
transport navigation and tour guides, synchromisation of
telecomm networlks and geodetic swrvey. GPS works best
in outdoor positioning but fails to perform well in urban
enviromments which are mostly impaired by poor/difficult
terrain, presence of barriers (such as walls, buildings,
trees, cars and underground structures) as GPS satellite
signals are weakened by these barriers, thus, rendering
GPS meffective for mdoor localisation (Gu ef al., 2009).
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In Wireless Local Area Network (WL AN) positioning,
the characteristic patterns of the perceived service quality
is highly dependent on the environmental features or
characteristics as well as installed Access Points (APs).
Hence, constraining positioning algorithms to a subset of
Reference Points (RPs) with related characteristics
emerged as a viable approach (Kushki ef af., 2006). This
approach compressed the search space of the user
location to a smaller number of RPs, followed by a finer
search on the refined set of RPs (Azizyan ef ., 2009).
Performance criteria associated with localisation systems
include accuracy, responsiveness, coverage, adaptivity,
scalability and complexity and cost (Farid ef ., 2013).
The accuracy (or location error) of a system 1s a vital user
requirement of positioning systems and may be reported
as the error distance between the estimated location and
the actual mobile location Responsiveness determines
how quickly the location estimate of a moving target 1s
updated. Coverage is necessary when evaluating the
effectiveness of a positioning system and is closely
related to accuracy. Adaptivity concerns the ability of the
localisation system to cope with changes or sudden
influence within the localisation environment and is also
a direct correlate of accuracy. An adaptive system can
also prevent the need for repeated calibration. Scalability
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suggests how well the system performs when it operates
with a larger number of location requests and a larger
coverage. Cost and complexity are tradeoffs between the
system complexity and the accuracy. They affect the
overall cost of the system.

Severe fluctuation of the Received Signal Strength
Indication (RS3SI) constitutes a challenging problem in
WLAN localisation, even for a stationary client (Lu et al.,
2016).
approaches to improving location accuracy. The RSSI

Previous research have evolved various
location estimation systems can be classified along two
architectures: deterministic (fingerprint or map-based)
and probabilistic (prediction-based) architectures. In
determimistic techmques, the wireless device learns by
listening to the channel as it receives beacons periodically
set by Access Pomts (APs) and records their Relative
Signal Strength (RSS) values at known positions of the
physical space (Bahl and Padmanabhan, 2000).
Subsequently, the system records RSS wvalues from
received beacons but at random unknown positions.
Deterministic algorithms use a similarity metric to
differentiate online signal measurement and fingerprint
data and the target is found at the closest fingerprint
location in sighal space (Han et al, 2014). Fuclidean
distance and cosine similarity are recognised metric
mnplemented for signal comparison of deterministic
architecture. The major advantage of deterministic
methods 13 the ease of mnplementation and can be
achieved using an algorithm such k-Nearest Neighbour
(k-NN) with low computational complexity. Some more
advanced deterministic algorithms such as Support Vector
Machines (SVMs), (Wu et al, 2004) and linear
discriminant analysis (Nuno-Barrau and Paz-Borrallo,
2006) show better localization accuracy with higher
computational cost. However, due to the unpredictable
nature of R3S measurements, most deterministic systems
computational Probabilistic
techniques employ R3S and radio propagation models to
locate the distance of a wireless user from the AP.
Probabilistic algorithms are based on statistical inference
between the target signal measurement and stored
fingerprints (Mirowska et al., 2014). Hence, given a
traiming set these algorithms find the target’s location
with the maximum likelihood (He and Chan, 2016).

show increased cost.

in localisation-based
technologies coupled with the increased benefits of

Literature review: Advances

ubiquitous computing and context-dependent information
have inspired great interest in location-based services and
applications (Farid et al, 2013). The development of
communication technology certainly demands the use of
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location-based services. Luo and Fu (2017) proposed an
algorithm for indoor localization based on RSS collected
from APs. The localisation algorithm contamed offline
information acquisition phase and online positioning
phase. First, they selected working APs using a selection
algorithm that scans their functioning status based on
signal stability. Second, a Kemel Principal Component
Analysis (KPCA) was used to elininate redundant data
and maintain useful characteristics for nonlinear feature
extraction. Third, the Affinity Propagation Clustering
(APC) algorithm utilising RSS values was used to classify
data samples to narrow the positioming range. They
found that their algorithm improved the accuracy and
computational complexity. Several challenges facing
WLAN fingerprint localisation schemes have also been
identified by (Fang ef al., 2008, Kupershtein et al., 2013,
Hiang et al., 2004). By Fang and Lin (201 2) an approach to
developing a WLAN-based location fingerprinting system
was proposed. Their algorithm ntelligently transformed
Received Signal Strength (RSS) mto Principal
Components (PCs) such that the information from all APs
is efficiently utilised. Results of their experiments
conducted mn a realistic WLAN environment showed that
the mean error was reduced by about 33% and the
complexity by 40% when compared to existing
methods.

Ekpenyong et al. (2017) obtained the perceived
performance in a field survey from an academic
environment and using the Interval Type-2 Fuzzy Logic
(IT2FL), uncertainties inherent in the field data were
efficiently modelled for accurate estimation of the Service
Quality (S3Q). The expected performance was then
modelled using two unsupervised tools: PCA and SOM,
to abstract the most relevant features and observe
similarity patterns between the abstracted features,
respectively. An Adaptive Neuro-Fuzzy Inference System
(ANFIS) was finally used to optimise the system
performance. Results obtained showed that ANFIS
sufficiently modelled the SQ as the Root Mean Square
Error (RMSE) values of the train and test data set were
approximately the same for the three study sites
considered. However, combining the three campuses
produced the least Mean Absolute Emor (MAE).
Ekpenyong et al (2018) presents the design and
construction of WLAN test bed infrastructure that
intelligently supports the tuning and visualisation of the
3Q where evolutionary PSO-ANFIS and GA-ANFIS are
independently tramed to fine-tune the test bed
performance. Their results showed that both systems
performed well as their Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) for both test and train
data were very close.
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The essential challenge in WLAN positioning system
15 the highly uncertain and nonlinear RSS which degrade
the positioning accuracy and increase the data collection
cost. To address this challenge, Deng et al (2012)
proposed the nonlinear discriminative feature extraction
of RSS using Kemel Direct Discriminant Analysis
(KDDA) to extract location features in a kernel space.
Furthermore, they employed location clustering to localise
the feature effectively avoid the
suboptimality caused by variability of RSS over physical

extraction and

space. Finally, the relationship between extracted features
and physical locations was established by Support
Vector Regression (SVR). Experimental results showed
that the proposed approach had higher accuracy wiule
reducing the data collection cost significantly. Applying
machine learning algorithms to cognitive radio appears to
be the state-of-art, given their robustness in feature
classification. Hou et al. (2011) proposed a combmation
of dimensionality reduction and SVM classification. Using
measured Wi-Fi signals with high Signal to Noise Ratio
(SNR), the Degrees of Freedom (DOF) of Wi-F1 signals
was extracted by dimensionality reduction techniques.
Their results showed dimensionality reduction unproved
the classification performance, as the classification error
rates obtained from the reduced features were better
than the error rates obtained from all the features. Song
and Wang (2017) proposed semi-supervised learning
algorithm called Co-Forest was used to create and
iteratively refine a random forest ensemble classifier that
performs well for location estimation. They demonstrated
their system on a large number of unlabeled RSS
samples with some labelled RSS samples. Results of
experiments conducted in a real indoor environment
showed that their proposed strategy reduced the demand
for large quantities of labelled samples and achieved good
positioning accuracy.

Positioning methods using existing wireless AN APs
have been well explored (Yim, 2008). Among the methods
explored, the fingerprint methods appear to be the most
promising and probabilistic method, k-NN (Nearest
Neighbour), Bayesian classification and neural networks
constitute the most used techniques. Yim (2008) proposed
a teclmique that builds a decision tree during the off-line
phase and determines a user’s location referring to the
tree. A time complexity and experimental accuracy
analysis of the proposed technique was also presented.
Obtaiming traming data 1s particularly challenging due to
a high number of possible interfering devices, difficulty in
obtaining precise timings and the need to measure the
devices in varying conditions. Longi ef al. (2017) focused
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on semi-supervised learning using convolutional network
to identify frequency devices from signal data. They
aimed to minimise the need for reliable training samples
while utilizing larger amounts of unsupervised labels to
improve the accuracy. They showed that with few
seconds of training data for each device thewr method

highly recognition.
(2016) considered indoor user

15 sufficient for aceurate
Narayanan et al,
localisation as a pattern classification problem using
Fuzzy Decision Tree (FDT) for locating users. 1i et al.
(2014) used the UllndoorLoc database as data set and
employed PCA for feature selection and building
prediction models based on decision tree, gradient
boosting, kNN and SVM, respectively. Their experiment
results indicate that combining kNN and Gradient
Boosting provided ligh prediction accuracy for Indoor
positioning. kNN showed good performance for large
dataset and Gradient Boosting had small cross validation
error for small data volume and robust to missing data. By
Roy et al. (2015) a decision tree based classification was
proposed to find the best node based on signal strength
and the environmental conditions. They simulated the
scenario using N 32 platform. An ensemble based learning
algorithm with bagging and adaptive boosting in C4.5 was
A
performance comparison showed that the boosted

decision tree algorithm gave the highest classification

also employed for improving the performance.

accuracy of 95.73%. Node localization 13 employed in
many wireless networks as it can be used to improve
routing and enhance security. In  Almuzaim and
Gulliver, (2012)a new algorithm based on decision
tree clustering was
proposed for node localisation in wireless networks.
They observed that their algorithm performed better
than the Linear Least Squares (LLS) and Weighted
Linear Least Squares based on Singular Value
Decomposition (WIL.S-SVD) algorithms, even when the
geometric anchor distribution about an un-localised
node degraded.

classification and k-means

MATERIALS AND METHODS

Proposed system framework: The proposed system
framework for the parameterisation and classification of
indoor location features 1s presented in Fig. 1. The
framework has three phases. The first phase deals with
RSSI information measurement which captures signal
strength data from the various mobile and fixed
infrastructures (APs and mobile users). A selection of
fuzafiable features for efficient signal-print representation
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Fig. 1: System framework
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Fig. 2: Structure of interval type-2 fuzzy logic for WLAN S0Q determination (Ekpenyong et al., 2018)

and service quality modelling 1s then carried out. In
phase 2, measurement of site-specific features of the
various indoor structures or buildings was performed. In
phase 3, data obtained from these phases were then
merged into a single dataset to form a collection of
fingerprints where acceptable reference pomts were
selected and parameterised using an unsupervised PCA
technique. The first three principal components with
dominant features are finally subjected to different
classifiers, to examine which classification technique
produces the best accuracy for modelling the
parameterised location features.

Signal strength data capture and feature extraction: A
capture of the Relative Signal Strength Indication (RSST)
information of the service area was performed through a
scan of the study environments (where APs are located)
using the Acrylic WiF1 professional a WiF1 analyser
software that identifies access points and WiFi channels
and is useful for analysing and resolving incidences on
802.11a/b/g/m/ac wireless networks in real time. The
functionalities of Acrylic include:

Efficient of
performance and commected users
Access pomt data transmission speeds 1dentification
and channels optimisation

Access WiFi network detailed information collation
mcluding  hidden

visualisation wireless  network

and  visualisation wireless

networks
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Site specific mformation were also gathered from all
the buildings. A list of the RSST and site information is
summarised n Table 1. A full methodological process
employed during the survey and sample data of RSST and
site-specific measurements 13 found 1n
Ekpenyong et al. (2018). To obtain precise SQ, parameters
with Fuzzy Membership Function (FMF) were
characterized. The RSSI data formed our major parameters

of interest and were passed as inputs to the Fuzzy-type-2

captured

Logic System (F2FLS) to provide precise representation
of the SQ. The proposed framework as shown in Fig. 2 has
five components namely, fuzzifier, knowledge base,
inference engine, type-reducer and defuzzfier. The
fuzzification module maps the crisp input (RSSI
information) to Interval Type-2 Fuzzy Sets (IT2FSs) using
a defined Triangular Membership Function (TMF)
method. The following RSSI parameters were considered
as inputs: RSSI, Number of Channels (NChannels) and
Maximum Baud Rate (MBR) while SQ represents the
output variable. The Universe of Discourse (UoD) for the
input and output variables and the domain intervals of the
variables, as well as the range of each variable used to
establish the fuzzy models are as defined in Table 2.
TMFs were adopted to evaluate each mput and output
MFs. Hence, the TMF (for a given mput/output, x) (%) as
shown in Hqg. 1 depends on three parameters p-p, and
indicates the mapping of each mput (RSSL, NChannels
and MBR) measurements or output (SQ) parameters,
required to obtamn the membership values:
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Table 1: RSST and site information captured form the service area
RSSI information-captured using Acrylic Professional software

RSSI parameters Meaning Data type
881D Service Set Tdentifier String
MAC Media Access Control address String
RSSI Received Signal Strength Indicator Number
SNR Signal to Noise Ratio Number
NoChan Signal cormrmunic ation Channel Number
ChanWidth Channel bandwidth Number
802.11 Infrastructure type String
MBR Maximum Baud Rate Number
WEP Wired Equivalent Privacy String
Vendor Infrastructure Vendor String
Megt Number of traffic Managed Number
VenType Vendor Type String
Latitude Geographic coordinate of study Number
location (center of a building),
north-south on the earth’s surface Number
Longitude Angular distance of study location
(center of a building), East-West of
the equator
Time Time of capture String
Site information-captured during site survey
Site pararneter Meaning
BID Building Identifier String
Bloc Building location indoor/outdoor? String
BType Building type Number
RSize BRuilding size Number
RPurp Purpose for which building is used Number
BHeight BRuilding height. Number
DFNOC Distance of building from NOC Number
Floor Number of floors Number
NOR Number of Rooms Number
Pathloss Signal propagation pathloss Number
Table 2: Domain intervals of input and output variables
Variables Lower boundss Upper bound Units
Input variables
RSSI -100 -5 dBm
Nchannels 0 20 -
MBR 0 350 msec
Output variable
SQ 0 100 %o
0, if x<p,
m; if p<x=p
o= 7P ()
P yp p=x<p,
PP
0, if x=p,

where, p, defines the triangular peak location while p, and
P> define the triangular end pomts. Figure 3 shows
the triangular shape IT2FS with its principal T1FS,
bounded by an UMF and a LMF. Applying the
prameters in Fig. 3 to Hq. 1, we derived Eq. 2 and 3 the
detailed computation formulae for the UMF(Ex) and
LMF (Ex), respectively, given an input/output variable

(x):
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Fig. 3: Triangular shape [T2FS

0, if x<,
-
= 11 , ifl=x<p,
P
H(x)=41; if p=x=<p, (2)
ﬂ; if p,<x<r,
5P,
0, if x>,
0, if x<1,
-
x 12 ; ifl<x<p,
uo=17 3
LX . if L(p,1,)H, &-p) <r
> =1
L-p; (pz _12)+(r1_p1)
0, if x=r,

where, I, and T,, represent the left end point of both UMF
and LMF, respectively and r, and r,, represent the right
end point of both LMF and UMF, respectively. The
domain intervals for the study were then partitioned
according to their lower and upper values, conditioned
towards standard WLAN regulatory estimates (Mazar,
2016; Xue et al., 2017). Using the fuzzy RSSI datasets, a
simulation of the IT2FL system was performed, to
generate the SQ (c.f. Ekpenyong et al., 2018). A PCA was
then used to reduce the dimension of the RSSI and
site-specific parameters. In this study, we concentrate on
the principal compenents with eigen values of at least
unity, selected in Ekpenyong et «al. (2017). These
parameters now form the inputs to ouwr PCA Model
formulated m the next section. Six site specific parameters
were accepted as major principal components out of
the 25 parameters used in the swvey. The accepted
parameters and their respective eigen values include:
BHeight (3.721831), BType (2.709880), NOR (2.455971),
BSize (1.338041), Floor (1.246454) and BPurp (1.062904).
We also include the following RSS related parameters
(DFNOC, Pathoss and SQ). The SQ represents the
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refined RSS information obtained from the application
of IT2FL on selected RSSI data (RSSI, Nchannel and
MBR) captured during the field survey. This refinement
process was necessary to eliminate uncertainties inherent
in the field data and will aid better location service
estimation. The Pathloss and DFNOC parameters with
eigen values 0.949341 and 0.841402, respectively were also
selected on the grounds that they represent crucial
Reference Pomt (RP) information for computing the
quality of service offered by the WLLAN. The additional
features therefore extend the number of extracted features
to nine.

Principal Component Analysis (PCA): PCA is a
dimension reduction technique that transforms original
set of fields mto smaller set that accounts for most of the
variance (or information) in the data. The new fields are
called factors or Principal Components (PCs). It is a
technique used to emphasize vanation and bring out
strong patterns in a dataset. The PCs are extracted
sequentially with the first principal component accounting
for the most variance in the data. Intuitively the first
principal component 15 a vector that pomts m the
direction in which the data are most “spread out”. The
second principal component is set up similarly but with
the additional constraint that it must be uncorrelated with
the first. Each subsequent principal component captures
an increasingly lower percentage of variation in the data
and is uncorrelated with the previously extracted principal
components. Principal components can be used instead
of the original fields in predictive models, to avoid the
problems that can occur when highly correlated variables
are used but at the expense of making model interpretation
more difficult. Also, the method can be used to determine
which groups of fields are likely to be jomtly highly
related to one another and help guide decisions in which
fields to omit from a predictive model.

of
parameters for mobile and fixed infrastructure within

Model formulation: Suppose a set indoor

an academic environment, here in referred to as
Fingerprints (FPs) have been recorded at time instance
(t,), m 1, 2, 3, ..., M with FP magnitudes

(£ ()£ (t2) .. £ (ty)) at each Reference Point (RT) where i

represents the AP index from a known set of Aps, 5 =
{AP, AP? .., AP Tt is common practice to take advantage
of same number of traiming samples, M at each RP. The
FPs from all APs at time t,, at a reference position p; are
organised as vector £(t,) = [{'(t.), £(t.), ..., T;]". Hence, the

entire radio map at recorded time instance t,; 1s:
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£{t,).£(t,)

R(t,) =Gt )Lt o fy(t) =] 8 fm=12.,M
£t ). f(t,)

“

Also let, £, = [£(t,), £i(t), ... BtlT, £ () = [Fi(t), £8), .,

£ ()] and fi(t,) = [t f(t), ..., £(t)]" indicate (at
different time nstances) a vector of FPs, at different RPs
and for different APs, respectively. If the time sequence
of the radio maps, R (t,) is averaged over the recorded
time interval, then the average radio map time is:

1

?, Py
P=(P, Py Py )= ¢ : (3

P Py

Where:
o=[0}07 0|
And:
1 M
¥ = 2 (k)

Next, we map the recorded measurements to a domain
of its PCs (Fang and Lin, 2012) and compute the sample
covariance of the FP (indoor and outdoor characteristic)
patterns at a RP, j, as:

(t,) )

Si=12,..,

-0 (£ (t.)-0)

N

Cov(i,i") = ﬁi(fj

i=1

(6)
=12 ..

and the global covariance matrix contains:

1 L - i i it it T_
Cov,( :m;;(ﬂ (tm)'q’j)(fj (tm)'q’]) ©(7)
ii'=1,2,...8
The eigenvectors of the global covariance matrix,
becomes:

(8)

Cov,.v,=).v.:8=12.,8

The data transformation into its PCs is obtained by
grouping the eigenvectors that correspond to the
eigenvalues and arranged in decreasmg order of
magnitude as:

o)

Feature selection and dimension reduction: A PCA-based
unsupervised selection algorithm (Luo et al., 2008) is
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adopted in this study to select the dominant principal
component features and eliminate redundant finger print
patterns that may contribute to (poor) selection. PCA is
useful in this research because it is a powerful tool for
visualising high dimensional data. Tt shows quantified
difference among observations and is useful for assessing
data quality and the discovery of relationships between
data points. Now, given an input space R” and target
space R, d<<D, let XeR"™® be an input dataset of N
samples and D features and XeR™ its low-dimensional
representation. A dimension reduction technique is the
mapping ¢: R°~R"that optimizes a cost function €: R*-R
on the target space. This problem can often be reduced to
an eigen value problem whose eigen vectors defines the
embedding Y. Assuming a training set with N samples
{x;}'=1, each sample represented by an n-dimensional
vector X, = [X,, Xy ... X%, PCA can be considered as a
linear transformation that maps data from the original
measurement space to a new space populated by a set of
new variables. Suppose the linear transform 1s denoted by
matrix L, then pattern x i the new space 1s represented as:

T

=M (10)

Where:

y:[Y1= ¥ s Xd]T= L:[qpqz: ---:qd]T
And:

qJT: [qu,xzj,...,xm},j=1,2,...,d (11)

where, d<n but most often dy»n. The new varables
¥;=i=1.2...d are called Principal Components (PCs).
Comnsider the projection of x; on the k principal axis, then:

Vi =X, = D 0 Xy, (12)
=1

As observed m Eq. 9, the projection of a sample on
the principal axis 1s a linear combmation of all variables.
However, some of the variables might be redundant,
urelevant or msignmificant which indicates that feature
selection can only be achieved through the identification
of
determining data projections on the principal axes. We

subset of variables whose roles are critical in

observe that the significance of a single variable x; can be
evaluated based on the value of the corresponding
coefficient ;. An approximate method (Dash ef al., 1997)
1s mtroduced here for feature selection in two inter-related
steps: select a subset of relevant features and select
critical features from the relevant features. A recurrence
defimition of Principal Component Dominant Feature
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(PCDF) about v, can be thus defined as follows: for a
specific principal component y, a variance with the largest
coefficient in the component 1s a PCDF, for the remaming
features, if x; 1s a relevant feature about y,, 1.e., p(x, y)>0
and there exists no PCDF x, which is subject to:

then features x; is a PCDF about y,.

Pattern classification: Classification 1s the task of
assigning an object to one or more categories. More
precisely, it is the task of learning a target function f that
maps each attribute set x to one of the predefined class
labels y. The target function is also known informally as
a classification model. A classification model is useful for
both descriptive and predictive modelling. In this section
we compare the effectiveness of four state-of-art and
commonly used classification techniques with the aim of
recommending which classification technique is best for
WLAN problems
classification techniques employ machine learning and
include: SVM, KNN, decision tree and ANFIS.

SVM (Cortes and Vapnik, 1995) is a discriminative
classifier capable of deciphering subtle patterns in noisy
and complex datasets, i.e., given labelled training data,
SVM outputs an optimal hyperplane which categorises

m academic environments. The

new exemplars. In SVM, a decision boundary that
maximises the “Margin” separating the positive from the
negative traming data points. To find this, we mimmise
172)w|f subject to the constraint ¥i(®%+b)21  The
resulting lagrange multiplier equation that requires
optimisation is:

L=%|\W||2-Za1(y1(\7v.ii+b)-l) (13)

Solving the Lagrangian optimization problem in Eq.
10 yields, w, b and ¢; parameters that determines a unique
maximal margin solution. On the maximum margin, the
positive and negative points that stride the separating
lines are called support vectors. The decision boundary
lies at the middle of the margin. The defmition of the
separator is dependent only on the support vectors,
hence, changing (adding deleting) non-support vector
points will not change the solution. In this study we
examine SVMs with the following kernel types: fine
Gaussian, Gaussian, quadratic
kernels.

coarse and linear
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k-NN classification (Friel and Pettitte, 2011) is one of
the most fundamental and simple classification methods
often preferred when there 1s little or no prior knowledge
about the distribution of data. k-NN learns the input
samples and predicts the response for a new sample by
analysing a certain number (k) of the nearest neighbours
of the sample using voting weight computation and so on.
It 15 commonly based on the Buclidean distance between
a test sample and the specific training samples. The kNN
algorithm is first implemented by introducing some
notations: Let S=(x,y):1=1,2, ..., n be the traiming set,
where x; 13 a d-dimensional feature vector and y,e {+1, -1}
is associated with the observed class labels. TFor
simplicity, we consider a binary classification. Suppose
that all traming data are 11d samples of random variables
with unknown distribution. With previously labelled
samples as the ftraining set S, the k-NN algorithm
constructs a local subregion R (x)cR, of the input space
which 1s situated at the estimation point x. The predicting
region R(x) contains the closest traming pomts to x which
is expressed as follows:

(14)

where dy, is the k th order statistic of {p#))' and D(x.%)
1s the distance metric. k[y] denotes the number of samples
m region which 1s labelled. The k-NN algorithm 1s
statistically designed for the estimation of posterior
probability p(y %) of the cbservation point x:

Xy Jp(y) . K[y]

(15)
p(x) k

MYB)ZM

For a given observation, x, the decision (x) is
formulated by evaluating the values of k[y] and selecting
the class with the lighest value:

Hﬂ{

Finally, the decision that maximises the associated
posterior probability 1s used in the k-NN algorithm. For a
binary classification problem where yie {+1, -1}, the kNN
algorithm produces the following decision rule:

Lk[y=1]zk[y =]
-Lk|y = -l|zk[y =]

(16)

g(x)= sgn(avexxeR(X)yi) (17)

In this study, we examine k-NNs with the following
kernel types: fine, coarse, cosine and weighted kernels.
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Decision trees are a simple and widely used classification
technique (Tan et al., 2006). Moving from one level to
another m a decision tree requires a test condition to
decide which branch to follow. This process 1s continued
until a leaf node 1s reached. Decision trees research
through recursive partiioning of the training set mn order
to obtain subsets that are as pure as possible to a given
target class. Each node of the tree is associated to a
particular set of records T that is split by a specific test on
a feature. For instance, a split on a continuous attribute A
can be induced by the test A<x. The set of samples T is
then partitioned into two subsets that yield the left and
right branches of the tree:

T, ={ teT:t{A)<x}
And:
T, ={tET :t(A)>x}

Similarly, a categorical feature B can be used to
induce splits according to its values. For instance, if B =
{b, by .., by} each branch i can be induced by the test
B = b; The division step of the recursive algorithm that
induces the decision tree observes all possible splits for
each feature and tries to find the best one based on a
chosen quality measure: the splitting criterion. If a dataset
1s induced on the following scheme: A,, ..., A, C where A,
are attributes and C 1s the target class and all candidates
splits are generated and evaluated by the splitting
criterion. Splits on continuous and categorical attributes
are generated as described above. The selection of the
best split is usually carried out by impurity measures. The
impurity of the parent node has to be decreased by the
split. Let (E,, E,, ..., E,) be a split induced on the set of
records E, then, a spliting criterion that makes used of the
impurity measure 1(+) 1s:

|Ei|
e
* E (E.)

(18)

A

M=

I(E)-

1

Standard impurity measures are the Sharmon entropy
or the Gim index. Classification and Regression Tree
(CART) uses the Gim index that is defined for a set E as
follows: Let p, be the fraction of samples in E of class ¢;

_ ‘{teE:t‘C‘:c]}‘ (19)
P I
Then:
Gim'(E)zl-ZQ:pf (20)
=1
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where, Q is the number of classes. We examine three
types of decision trees: sumple, complex and medium
decision trees.

ANFIS (Suparta and Alhasa, 2016, Yang ef al., 2014)
is a hybrid classifier that combines the capabilities of
neural network and fuzzy logic, to leamn features m a
dataset and adjust the system parameters according to a
given error criterion. It 1s tramed with the back
propagation gradient decent method in combination with
the least squares method. The ANFIS architecture has
five layers. The first and fourth layers contain an adaptive
node while the other layers contain a fixed node. A brief
description of each layer is as follows:

Layer 1: Every node in this layer adapts to a function
parameter. The output from each node represents a degree
of membership value that is given by the input of the
membership functions. The membership function may be
a Gaussian membership function (Eq. 18), a generalised
bell membership function (Eq. 19) or any other type of
membership function:

um(x)exp{—[xz_cij } (21)
a
o
Hai (X) - o 76 (22)
1+—
al
O,;=n,(x)i=1,2 (23)
O, =ug (y)i=34 (24)

where, pand g, ; are the degree of membership functions
for fuzzy sets A, and B, respectively and {a, b, ¢} are the
parameters of a membership function that can adjust the
shape of the membership function. The parameters in this
layer are typically referred to as the premise parameters.

Layer 2: Every node 1n this layer 1s fixed or Non-adaptive.
The output node is the result of multiplying of signal
coming into the node and delivered to the next node. Each
node in this layer represents the firing strength for each
rule. In the second layer, the T-norm operator with general
performance, such as the and is applied to obtain the
output:

O, =w,=u, (x)*ny(y).i=12 (25)

where, w; is an output that represents the firing strength
of each rule.
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Layer 3: Every node in this layer is fixed or non-adaptive.
Each node is a computation of the ratio between the ith
rules firing strength and the sum of all rule’s firing
strengths. This result is known as the normalized firing
strength:

: (26)

Layer 4: Every node in this layer 13 an adaptive node to
an output with a node function defined as:

O,;=wi =Wi(PiX+PiY+T1) 27

where, W, is the normalised firing strength from the

previous layer (third layer) (Px+py+r;) and 1s a parameter
inthe node. The parameters in this layer are referred to as
consequent parameters.

Layer 5: The single node in this layer 13 a fixed or
non-adaptive node that computes the overall output as
the summation of all incoming signals from the previous
node:

(28)

RESULTS AND DISCUSSION

Average PC analysis: An analysis of the average
pathloss and SQ, computed for the three campuses under
investigation (town, amnex and main campuses) 1s
presented in Fig. 4-6, respectively. Figure 4 and 5 both the
town and annex campuses showed poor service quality
with SQ and associated (pathloss) of 54.30% (84.77 dB)
and 50.52% (82.24 dB) while the main campus showed
good service quality SQ and associated (pathloss) of
60.21% (90.08 dB). The poor 5Q at the town and annex
campuses as observed in Ekpenyong et al. (2018) was due
to poor terrain and congested or dense environment (at
town campus) and widely spaced APs leading to poor
signal reception (at annex campus). The main campus had
few structures but the wide distance between the
buildings and the Network Operating Centre (NOC) did
not affect the signal quality because there was clearer line
of sight, compared to the other campuses. The defect in
the SQ is evident in the trend exhibited by the average
pathloss and service quality plots as that of the main
campus appeared more stable than the other two
campuses.

PC parameterisation: A distribution of the data set with
SamplexFeature (SxF) diunension for the three campuses
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Fig. 4: Plot of average pathloss and service quality at the town campus
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Table 3: Distribution of dataset for PCA parameterisation

Variables  Town campus Annex carmpus Main campus
Category SxF Type SxF Type SxF Type
Inputs 20679  Double 925x9  Double 291x9  Double

and used for the PC parameterisation is shown in Table 3.
Table 3, the town campus has the highest data points,
followed by the annex campus and then the main campus.
Also, the data points were populated from direct
measurements obtained from the nine location features
selected for the study. In Table 4 a PC parameterisation
showing the first three PCs obtained from the town
campus data for the selected location features is
presented. Observe that only building size was most
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Table 4: PCA parameterisation of town campus data

Table 7: PCA parameterisation of all campuses data

Principal components

Principal components

Indoor/Outdoor parameters 1 2 3 Indoor/outdoor parameters 1 2 3
Building type -0.3567 -0.5740 -0.5856 Building type -0.3390 -0.5716 -0.7573
Building size 2.6650 -0.0933 -0.0098 Building size 2.6665 -0.0263 0.0018
Purpose -0.3549 -0.5435 -0.5287 Purpose -0.3387 -0.5353 -0.6160
Height -0.3539 -0.5462 -0.4771 Height -0.3384 -0.5002 -0.5701
Distance from NOC -0.2486 2.5199 -0.8149 Distance from NOC -0.3075 2.5542 -0.6891
Floor -0.3570 -0.5731 -0.5948 Floor -0.3391 -0.5814 -0.7751
Number of rooms -0.3512 -0.5290 -0.4356 Nutnber of rooms -0.3353 -0.4814 0.1313
Pathloss -0.3134 0.3314 1.7627 Pathloss -0.3332 0.1975 20031
Service quality -0.3293 0.0077 1.6838 Service quality -0.3354 -0.0555 1.2715
Table 5: PCA parameterisation of town annex campus data
P — D Table 8: Classification results of selected classifiers
Principal components - -
Overall classification accuracy (%o)

Indoor/Outdoor parameters 1 2 3 " 1
Building type -0.3530 -0.5936 0.5852 _ Town Annex Main A
Building size 2.6658 -0.0621 0.0232 Classifier campus  campus campus _ campuses
Height -0.3508 -0.5694 0.4950 Coarse (.}aussw.n SVM 88.10 70.80 66.70 81.90
Distance from NOC -0.2846 24564 0.9803 Quadratic SVM 90.50 79.20 3330 88.00
Floor -0.3542 -0.5902 0.5864 Linear SVM 92.90 91.70 50.00 93.10
Number of rooms -0.3436 -0.6250 0.2024 Fine k-NN 83.30 79.20 50.00 87.50
Pathloss -0.3038 0.4773 21,9480 Coa.[se k-NN 88.10 70.80 66.70 87.60
Service quality -0.3225 0.0672 -1.4213 Cosine k-NN 88.10 79.20 66.70 86.10

Weighted KINN 92.90 75.00 50.00 87.50
Table 6: PCA parameterisation of main campus data Simple decision free §7.60 95.80 66.70 95.80

Principal components Complex dec.ls.lon tree 95.80 97.60 95.80 66.70

Medium decision tree 97.60 95.80 66.70 95.80
Indoor/Outdoor parameters 1 N 3 ANFTS 80.48 77.76 83.42 79.58
Building type -0.3390 -0.5716 -0.7573
Eu‘ldmg size égggi 'g'gggg 8' 2%3 (pathloss and service quality), respectively. A PC

urpose -0 -0 -0. .. . .

Height 03384 -0.5002 05701 parameterisation of all the data points (i.e., all the three
Distance from NOC -0.3075 2.5542 -0.6891 campuses data) 1s presented in Table 7. We observe that
Floor -0.3391 -0.5814 -0.7751 11: : : : -
Number of rooms 03353 a8l 01313 bu.lldl.ng size showed major difference for the first
Pathloss 103332 0.1975 2.0031 principal component, distance from NOC and (pathloss
Service quality -0.3354 -0.0555 1.2715 and service quality) showed the least variances for the

dominant (i.e., had Eigen value of at least unity) for the
first principal component while distance from NOC and
(pathloss and service quality) were least dominant for the
second and third principal components, respectively.
These features captured the least wvariances when
compared with the first PC. A PC parameterisation
showing the first three PCs obtained from the annex
campus data for the selected location features 1s
presented in Table 5. From the table, all the location
features showed no major differences, except building size
distance from NOC and (pathloss and service quality)
which showed significant differences for the first and
second PCs, respectively. We observe a similar trend for
the first two PCs in the PC parameterisation of the main
campus data but with pathloss and service quality
contributing the least variance for the third PC (Table 6).
Hence, at the three campuses, building size (first principal
component) appeared to capture the most variance while
the remaining (or least) variances were captured by the
second and third PCs, 1e., distance from NOC and
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second and third principal components, respectively. We
deduce here that the high number of data at the town
campus may have influenced the overall dataset as the
third PC in the annex campus showed no significant
variance when parameterised alone (Fig. 5).

PC classification: In Table 8 we present the results of the
selected classifiers examined n this study. In the table,
columns with best classification accuracies are shaded
with olive colour while worse classifiers are shaded with
red colour. A graph plotting the classification accuracy
vs. the classifier types is presented in Fig. 7. At the town
campus, the decision tree classifiers gave the highest
classification accuracy of 97.60%, followed by linear SVM
and weighted k-NN classifiers which gave
classification accuracy of 92.90% and then the quadratic
SVM which produced a classification accuracy of 90.50%.
The least classification accuracy came from ANFIS
(80.48%). The result implies that for areas with poor
terrain,

same

interference-prone condition occasioned by
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Fig. 7. Graph of overall classification accuracy vs. classifier type

congested structures and massive mobile users and more,
decision tree, linear SVM and weighted k-NN classifiers
are excellent at modelling WLAN FP patterns as impeding
challenges such as interference between mobile and fixed
infrastructure may have led to the wrong classification of
related FP patterns. As regards the annex campus,
decision tree classifiers and linear SVM classifier
produced best classification accuracies of 95.80 and 91.70,
respectively while all the other classifiers performed below
80% accuracy level with Coarse k-NN, Fine Gaussian and
Coarse Gaussian SVM classifiers vielding the least
classification accuracy of 70.80%. This result indicates
that for areas with poor connections and spatial (uneven)
distribution of WLAN infrastructure, decision tree and
linear SVM classifiers can still maintain improved
performance in terms of classification accuracy, compared
to other classifiers which showed very poor performance.
Concerning the main campus, the ANFIS classifier show
promise of predicting well the FP patterns as it produced
the highest classification accuracy of 83.42%, compared
to other classification techniques which performed very
poorly with the quadratic SVM producing the worse
classification accuracy of 33.30%. Indeed, the result
indicates that for areas with few population and WLAN
infrastructure, ANFIS is best suitable for modelling the FP
patterns. A combination of all campuses data reveals that
decision tree classifiers gave the highest classification
accuracy of 95.80%, followed by linear SVM which gave
same classification accuracy of 93.10% while ANFIS gave
the worse classification accuracy of 79.58%.

CONCLUSION

Location information of nodes in a wireless network
is useful for a variety of reasons including, mobile nodes
tracking within a network coverage area, periodic
monitoring of the network coverage area, coverage area
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determination, support load and traffic management, node
lifetime control, cluster formation and enhanced network
routing. This reserach has provided a workable framework
for fingerprint  patterns  parameterisation  and
classification, vital for indoor WLAN localisation. The
parameterisation process offers useful insights into the
degree of variances exhibited by dominant location
features while the classification process predicts the
fingerprints in a more robust manner. In the future, we
shall exploit the use of sensor technology for information
collection and signal identification, to provide real-time
localisation, prompt service quality delivery and timely
fault tracing and fixing in wireless communication
environments which include academic environments.
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