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Hand Gesture Recognition Using Electromyographic Signals Throw a
Deep Convolutional Neural Network

JTavier O. Pinzon Arenas, Robinson Jimenez Moreno and Ruben D. Hernandez Beleno
Faculty of Engineering, Nueva Granada Military University, Bogota, Colombia

Abstract: This study presents the implementation of a convolutional neural network focused on the recognition
of hand gestures for this case 3 specific types of gestures using the EMG signals as mput which were acquired
through the Myo armband device and processed by means of a characteristic map extraction technique which
is the power spectral density. The development of this worlk is divided into 2 phases where the first consists
of the acqusition and processing of the electromyographic signals of different users with different arm
thickness from which 2 databases were built and the second phase describes the architecture of the
convolutional neural network to be used and the traiming that was performed with each database independently,
obtaining two trained networks. Finally, two types of tests are performed, a validation test in which the
accuracy of the two trained networks is verified where a accuracy rate of 91.7 and 92.5% was achieved and a
real-time behavioral test where the two networks responded adequately, meaning that the use of convolutional
neural networks for the recognition of hand gestures by means of electromyographic signals can reach high
ranges of accuracy, even greater than 90%.
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INTRODUCTION

During the last decade, different advances have been
made 1 the interaction between human and machine,
generating a great variety of techniques and devices to
set communication between them. One of the most
mvestigated technmiques 1s the use of Electromyographic
(EMG) signals with which several developments have
been carried out in the fields of medicine, health care and
robotic  control these three
synergistically jomed to advance in the elements that
have been implemented. An example of this 1s found in the
work of Masson et al. where EMG signals are used to
control a robotic prosthesis of an upper body limb using
a device called Myo armband developed by Thalmic
Labs™ or as the one presented by Noce ef al. (2016)
that use electromyographic signals for the control of a
one-handed prosthesis for an amputated person.

As mdicated by Singer and Goldin-Meadow (2005)
the interaction with gestures made by hands 15 an
important part of communication between people, so,
research focused on the use of these gestures for
human-machme interaction has been of great mnterest,
even one of the mamm finctions of Myo armband
is  the predetermined recognition of 35 different
gestures performed by the hand. This function has

where have been

allowed to implement the control of robotic arms
(Murillo et al., 2016), navigation in graphical user
interfaces (Mulling and Sathiyanarayanan, 2015) or even
adding more gestures as it was done by Abreu ef al
(2016) where different gestures for the recognition of the
alphabet were integrated by means of sign language using
the EMG signals obtamned by the Myo. The Myo has also,
allowed to make an effort to extract EMG signal
characteristics as proposed by Arief ef al. (2015) where a
comparison of 5 different extraction technmiques 1s done in
order to reduce the complexity of an unprocessed signal,
due to the difficulty of processing such signals for the
machine learning applications which at the same time,
increase the computational cost required.

On the other hand, due to the development and
effectiveness of techmques such as Deep Learmng (DL),
it has recently begun to combine this with the use of EMG
signals. An example is shown byWand and Schultz, (2014)
where DL 15 used through the mnplementation of a
Deep Neural Network (DNN) to perform silent speech
recognition through EMG signals, ie., by means of
muscular movements at the moment of speaking, it
classifies the phonemes that are being used. In order to be
able to use the electromyographic signals as mput of the
neural network in that case a feature extraction was made
by means of the logarithmic power of the signal.
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However, there are other types of techniques in deep
learning such as Convolutional Neural Networks (CNN)
which are specialized in pattern recognition. Although,
they were mitially implemented for the recognition of
patterns in images as shown in the research of Simonyan
and Zisserman (2014) and Krizhevsky et al. (2012)
they have begun to strengthen in the recognition of
patterns mn signals for example mn speech recognition
(Abdel-Hamid et al., 2014) by extracting features of audio
signals. Considering this, it is possible to think that the
functionality of the CNN can be implemented in the
analysis of the electromyographic signals for the
recognition of hand gestures.

The novelty of this research is the use of two
techniques that have not been applied to the recognition
of hand gestures by means of EMG signals which are the
extraction of characteristics by power spectra and
classification by convolutional neural networks, so that,
its use can be focused on the
interaction.

This research is focused on the recognition of 3
different gestures of the hand through convolutional
neural networks which are “open”, “closed for grip” and
“closed for use” where these gestures are used to

human-machine

recognize if the user needs a tool when he receives it and
when he accepts the tool to be used. For this, processed
electromyographic signals obtained from the right forearm
are used, to then be entered into a convelutional neural
network and thus, to recogmze what gesture the user 1s
performing.

The development of this work was carried out in 2
phases. The first phase consisted in building the database
of the electromyographic signals of each gesture, for
which it was first necessary to perform the acquisition of

the data of the signals and then to obtain their feature
maps. The second phase corresponded to the
implementationof the convolutional neural network
architecture (Krizhevsky et al., 2012) and its training.
Finally, the validation and use tests in real-time are
presented in order to reach the conclusions.

MATERIALS AND METHODS

Phase 1; Data acquisition and database build: In order to
perform the traming of a neural network m the first
instance 1t 18 required to obtain the electromyographic
signals that will be processed. For this, the Myo armband
device of Thalmic L.abs™ is used which is a bracelet that
has 8 biosensors that measure the Electromyographic
signals (EMG) of the muscles of the forearm according to
the movements that are made by the hand, additionally, it
contains an Inertial Measurement Unit (IMU) of 9 axes of
which 3 axes belong to a gyroscope, 3 to an accelerometer
and 3 to a magnetometer (Thalmic Labs Inc., 2017a). The
sensors are distributed in eight segments joined by an
elastic material which facilitates its use allowing to stretch
or contract for the user’s comfort (Thalmic Labs Inc.,
2017b). The physical structure of Myo 1s illustrated in
Fig. 1.

In order to collect the data in a similar way for all
users, the Myo must be located in the right arm of the
user as shown in Fig. 2, so that, the sensors take the
electric signals approximately from the same muscle.
However, since, the thickness of the arm is variable in
everyone, the location of the muscles is different in each
one as it 18 indicated by Murillo et al. (2016), so, it 1s
necessary to observe which sensors have a similar
behavior in each gesture and do not generate excessive
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Electrical sensors

Fig. 1: Myo armband components by Thalmic Labs Inc., (2017)
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noise which involves analyzing the movements that are
required in conjunction with the signals acquired and
thus, choose 3 sensors to build the database.

For the acquisition of the Myo armband signals,
MATLAB® Software is used in conjunction with a toolbox
created in previous works which allows the visualization
of the signals of the sensors without any previous
processing, called Myo data acquisition toolbox. The
toolbox interface, shown in Fig. 3 has the options of
constantly sampling the acquired signals or taking a
sample mn a specific time range. It should be noted that the
signals are sampled at a rate of 200 Hz for EMGs and 50 Hz
for IMUs.

In order to make the selection of the Myo EMG
sensors to be used, the comparison of each of the sensors
15 made m arms of different thickness, making the 3
movements that are wanted to recognize. An example of
this comparison is illustrated in Fig. 4 which shows
different hand gestures tests to observe their behavior in
three subjects. As can be seen, the sensors with the best
behavior are 1, 2, 5 and 6, since, they generate less noise,

Fig. 2: Location of the Myo armband ih the right forearm
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especially when the hand is open and the behavior of the
signal 1s similar for each case m each type of gesture. The
sensor 8 also had a good behavior for thick and
medium-thickness users but for thmn it did not react
adequately and the signal did not significantly vary.

Once the sensors have been chosen, samples with
different subjects are made by performing each gesture in
a range of 2 sec per gesture. For this, the option of taking
a sample m a specific time range of the toolbox 13 used,
selecting the chosen sensors and writing the desired
sampling time generating a matnx of 400x5 where 400 are
the data obtained and 5 refers to 1 column of the sampling
time and the 4 sensors chosen. With this, a database of
each gesture 1s obtained, however, being a raw signal its
features are not, so, evident to be the input of a CNN,
since, relatively the signals would be seen almost as a
random element by the network. Therefore, to obtain a
more suitable mput type, it i1s performed a feature
extraction processing of the signals obtamed from each
user.

The feature extraction of the signal 1s done by means
of the Power Spectral Density or PSD using the Welch's
method, developed by Welch (1967) which represents the
amount of energy that is in the signal in each frame. For
the analysis, frames of 50 msec are used, due to the
sampling condition of Myo signals (200 Hz) which obtains
the signals every 5 msec, therefore, 10 samples are taken
per frame to analyze their PSD. With this, it is obtained
101 coefficients per frame, representing the power every
1 Hz from 0-100 Hz, taking mto account that the sampling
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Fig. 3: Graphic mterface of the Myo data acquisition toolbax
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Fig. 4: Test for 3 kind of arm thickness (thin, medium and thick) where each user imtially keep the hand open for

approximately 10 sec then closes the hand as grasping a tool for 10 sec, following this opens the hand again and
then closes the hand for tool use, repeating this last sequence one more time
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Fig. 5: Signal plot (upper graphic) and feature map of the signal (lower graphic) of the sensor 5 for the gesture “Closed

for use”

frequency is at least double the signal frequency
(sampling theorem), obtaning a feature map of 40 frames
as shown in Fig. 5.

Performing the extraction of characteristics, it is
obtained a matrix of 101 %40 for each sensor, however, to
feed the CNN, an emulation of a matrix composed by the
RGB compenents of an image 1s made where by a matrix 1s

486

created with the feature maps of 3 sensors of the 4
chosen, therefore, 2 databases are made, cne with the data
of the sensors 1, 2 and 5 (database 1) and another with the
data of the sensors 6, 2 and 5 (database 2).

In total, two training database of 400 samples each
was obtained where 200 samples are ofclosed for use
{(Closed Use), 100 of closed for grasp (Closed Grasp) and
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Fig. 6: Tramng behavior of the network trained with the database 1
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Fig. 7: Training behavior of the network trained with the database 2

100 of open hand (Open). The reason for using more
samples in the “Closed Use” category is because it may
tend to create confusion between the two additional
categories, depending on the arm thickness of the person
and how the Myo armband is worn.

Phase 2; Architecture implemented for the convolutional
neural network: The architecture of the convolutional
neural network is trained with the two databases built to
observe which one has the best behavior. This
architecture is configured with two types of convolutional
filters: frequency analysis filters which will extract the
characteristics of the map in terms of frequency and
combined analysis filters, i.e., a square filter which will
analyze both frequency and time of the map, allowing to
extract together behavioral characteristics of the
frequency changes over time. The implemented
architecture 15 found m Table 1 m which groups of
convolution analysis combined plus convolution in
frequency are made to obtain better extraction of
characteristics, mamtaming the size of the entrance
volume by means of zero-padding, except in the last stage
of the network where only a combined convolution is
performed. Additionally, a downsampling 1s made after
each group mn order to reduce the mput volume to the next
group of convolutions for a more detailed feature
analysis.
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Table 1: Architecture implemented each layer of the network architecture is
composed by an amount of k filters with a specific kemnel, i.e., a
determined size N=M of the filter, a stride 8 which is the step that
the filter is moved and a padding P that is the amount of files
added at each border of the input volume

Layer Kernel

Input 101 x40%3 Filters
Convolution 55 3=1/r=2 32
Convolution 61 3=1/P=2x0 32
Max pooling 2x2 8=2 -
Convolution 33 3=1/P= 64
Convolution 5x1 §=1P= 64
Max pooling 2x2 8=2 -
Convolution 33 3=1/r=1 256
Max pooling 2x2 8=2 -
Fully-connected 1 512
Fully-connected 1 -
Softmax 12

With the architectire implemented, the traimng is
done with the two databases obtamed, traimng under the
same learmng parameters and the same number of epochs,
obtaiming the traming graphs of Fig. 6 and 7. As can be
observed, the network trained with database 1 had a
better performance than the network of database 2 where
the accuracy of training of the first managed to obtain
more than 95% of accuracy while the second stabilized at
approximately 87.5%, showing a lower recognition during
the training process. Although, 300 epochs were used to
perform network traming, the two networks managed to
achieve their stabilization in a high degree of traming
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accuracy in <25 epochs which also shows CNN’s high
ability to recognize signal pattermns. However, a validation
test should be performed with data that 1s not included in
the traimng databases.

RESULTS AND DISCUSSION

Validation test: To validate each of the trained networks
it is used two additional databases of 120 samples in total
each, not belonging to database 1 and 2 where 60 samples
are of closed for use (Closed Use), 30 of closed for grasp
(Closed Grasp) and 30 of open hand (Open). With these
validation databases, the confusion matrices of Fig. 8 are
obtained where it can be observed that the two networks
got an accuracy of recognition of the gestures in a
percentage greater than 90%.

However, although, the network tramned with
database 2 had a less favorable behavior in its training,
obtained a 0.8% more accuracy than the other network in
the validation. What is more marked in the mistakes made
by the networle with database 1 are the mistakes with the
category “Open” where it had & misclassifications which
is due to the fact that in users with thick arm, the sensors,
mainly sensor 1 and 5, tend to generate a sufficient
amount of noise to raise the percentage of the
electromyographic signal to wvalues close to those
registered in the “Closed Use” category m users with
thin arms which can be observed in the tests performed
shown in Fig. 4. Something similar happens with errors in
the “Closed Grasp™ category, since, a user with a very
thin arm, can generate electromyographic readings close
to the one generated by a medium shape arm in the
“Closed Use” category.

Real-time test: For the real-time testing it was used the
implemented toolbox. In the test first, the user keeps their
hand open for a tool, once it is delivered they close the
hand handling the tool as a delivery signal then change
the position of the hand to use the tool in this way, the 3
gestures categories are tested. These tests are mainly
done to observe how the trained networks behave while
a user 18 wearing the Myo and if when the gesture is
made, the algonthm responds with the
classification, clarifying that the network classifies every
2 sec the gesture made this because the input of the
network is a feature map made for a sample of 2 sec of the
EMG signal.

Figure 9 and 10 show two examples of tests
performed with the network trained with database 1 for a

correct

user with medium-arm and with database 2 for a user of
thick-arm, respectively.
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Fig. 8 Confusion matrix of the network trained with: a)
database 1 and b) database 2 where target and

output class 1-3 are Closed Grasp, Closed Use
and open, respectively

As it can be seen in Fig. 9 and 10, although, the two
subjects have different arm thickness and their signals on
the 3 sensors chosen for each network are different in
each user (mostly by comparing the signal strength of
sensors 2 and 5), the two networks responded adequately,
correctly classifying each type of hand gesture at the
moment the user made the gesture.

Although, the two tramned networks responded with
very good behavior and had a high degree of accuracy
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Fig. 10: Real-time test made for a medium-shape subject using the network trained with the database 2

validation, the 0.8% gap, although, small 1s a difference
that can mean a faster correct classification, avoiding to
confuse the gestures in more cases and a time reduction
and effort made of the user when making the gesture.
Therefore, in general, the best trained networl is where
database 2 was used for training.

CONCLUSION

Tt was implemented a new way of analyzing the
electromyographic sighals for the recognition of hand
gestures, through the use of convolutional neural
networks which m tum, extends the wvariety of
applications where this type of neural network cen be
used.
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The use of an architecture based on frequency and
time-frequency analysis allows a better extraction of
patterns from the electromyographic signals used for a
correct classification of the hand gesture, even using
different to tram the same architecture,
achieving a recognition accuracy of more than 90%
in the two tests performed which is a degree of
recognition suitable for applications of collection and
use of tools. Given that the Myo base application
recognizes  the “Closed Use”
“Closed Grasp” as only “Closed”, it can be observed that
this neural network also, allows to classify similar

SCIISOrS

categories and

gestures with each other only using 3 of the 8 sensors
that the bracelet possesses.
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For the acquisition of EMG through Myo armband, it
1s necessary to take mnto account the arm thickness of the
different people who can use the bracelet in the
application to be inplemented, the position in wlich it 1s
to be worn and the sensors to be used this is due to the
fact that the reading of the signals varies because of these
causes which can lead to an erroneous acquisition of
data, either for the bulding of the database for the
training of the network or a bad recognition due to the
misleading data that 13 entered into the network, 1.e. that
for instance the network has been trained with
sensors 1-3 and it 1s entered the data obtained from
sensors 2-4.

Considering the results obtained, convolutional
neural networks can also be used in the analysis of
signals that may be viewed as random but using a suitable
extraction technicque, the network is able to recognize
signal patterns, identifying it in a predefined category
with a high percentage of accuracy. Also, gesture
recognition through EMG using CNN can be used m a
wide variety of applications, whether for rehabilitation,
control or robotic assistance.

On the other hand, if it 18 desired to reduce the error
m the recogmition this technique can be used in
combination with others such as with machine vision or
correlation between different signals of the same Myo.
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