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Abstract: Finding the median is very important in many fields of life, therefore, we have addressed in this study
derived approximate selection of median using Bayesian approach with prior and posterior distribution, so that,

the sample size of observation is even number.
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INTRODUCTION

In many circumstances, we select the median value
(alternative) among the alternatives. In this case, we ask
how the median can be found reasonably quickly. Just like
the “faster selection”, given an unsorted array, how
quickly can one select the median element? Median
finding is a special case of the more general selection
problem which asks for the Yth element in an arranged
order (Dor and Zwick, 1999).

The ranking and selection methodology 1s distinct.
The ranking and selection methodology asks given the
information regarding the distribution what is the
probability that we can acceptably rank them from
smallest to greatest?” What is the probability pick the
finest population maybe the one with the biggest
populace mean or at smallest populaces? (Horrace,
2000).

R&S procedures are statistical methods specifically
advanced to select the greatest method or a subset that
encloses the greatest method design from a set of
multi-competing  altematives for example altered
treatments (medicines) for a specific sickness or several
contenders for certain place. The methods known
generally as ranking and selection procedures include
techniques appropriate for many different aims, although,
each different aim needs careful formulation of the
corresponding problem.

Al-Hassan (2006) the fully optinal Bayesian
sequential best selection procedure using the dynamic
programming technique in conjunction with Bayesian
decision-theoretic approach.

By Madhi and Kawther (2007) addressed Bayesian
fixed sample size for selected worst m multinomial
distribution. Later by Sultam (2014) complemented her
research in 2007 by using functional analysis for the
purposes of approximation.

Al Hassan (2010) find a new approach: median
selection where sample size 13 odd and found median
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selection when sample size is even (Al-Hassan, 2016).
Al-Hassan also found approximate of odd median by
functional analysis. In this study, we introduce Bayes
approximate to find median stopping risk in multinomial
distribution where the size of sample is even with prior
and posterior distribution.

Selection Bayes median (Al-Hassan, 2016): Tn statistics
and probability theory, the median is the arithmetic rate
sorting out the upper half of a data sample, cells from the
lesser half. The median of a finite list of values can be
found by ordered all the observations from last value to
utmost value and picked the mid one. If there is an even
number of observations, then there are two mid values we
can calculate the median from average to their values
(Horrace, 2000).

Now, we present the problem of selecting the median
category out of R mutually exclusive categories when
each element in a single population is classified into one
of these R categories. For each of the R types (cells) there
1s a certain probability that any element will be classified
Pis Pas -+ Pz- The median cell may be defined as the one
with the half biggest probability or alternatively as the
one with the half lowest probability, dependent on the
state.

Before discussing the R-nomial ranking and selection
problem in more detail, we initial develop the R-nomial
distribution model. Tet an arbitrary experiment or process
where each outcome is classified into one of R possible
mutually exclusive possibilities which we call categories
{or cells). Let, P = (p,,..., Py, Pye1» ---» Pr) Where, p; is the
probability of the event E, (1<i<R) with:

p=1

i
i=1

when m is even observation, the median dependent enn,,
n,.; and p,, py.. Where ¢ = R/2. Let. n,, ... 0, 0y, ... Dy
be respective frequencies in R cells of the distribution
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with, it is assumed that the values of p, and of the py; (1 <1,
j<R) is completely unknown. We will the probability of the
median event is £, 4 and the expected value of median

cell is:
[p[med]:|
)

and let, pyy <, ... <Py Py s - <Py denote the ordered
values of the p(i =1, ..., R) such that p= (i P2--- Pr) the
probability p, of an observation in the cell i:

Plalp) -

E

ol

n!nt, ..

In the Bayesian procedure we depended on the
prior and posterior distribution. Prior distribution of p,
15 conjugate to the R-nomial distribution Dirchlet
distribution with prior density function is:

Such that:

and the posterior probability:
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Which 15 a member of the Dirichlet family with
parameters n, = nin and v =y'{L2..R) with mean
p=n.y’ will be termed the posterior frequency in the
cell 1.

BAYES APPROXIMATE OF EVEN
MEDIAN STOPPING RISK

The posterior expected 1088 8 (n, n,.np ..0p. W) OF
Bayes risk of the terminal decision d can be approximate
as follows:

= E
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Now, we can approximate there formulas:
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Now, from above equations we get:
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Then:
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CONCLUSION

In this study, we introduce Bayes approximate to find
median stopping risk in multinomial distribution where
the size of sample i1s even with prior and posterior
distribution.

RECOMMENDATIONS

Some directions for future research are given as
follows: can use sample size as a group of
observation to build Bayesian sequential scheme for
the selection problem. General loss functions may be
tried where linear loss is considered as a special case. In
some problems the experimenter might be mterested in
selecting a subset of the cells including the median
cell. In this problem a comrect selection is the
selection of any subset including the cell with ith median
probability. Bayesian approach can be used to solve
such as a problem. We can find one of measure of
dispersion.
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