Research Journal of Applied Sciences 13 (11): 675-680, 2018

ISSN: 1815-932X
© Medwell Journals, 2018

Related Reflections to the Axioms of Separation in Semigroups with
Topologies and Some Applications

'Tulio Cesar Hernandez Arzusa, “Ruben Dario Ortiz and 2Ana Magnolia Marin Ramirez
'Ecuaciones Diferenciales Research Group,
*ONDAS Research Group, Universidad de Cartagena, Cartagena, Ceolombia

Abstract: In this study, we study the reflections of the category of topological and semitopological semigroups
on the category of the class of T-T, and regular topological spaces and we apply its properties to find
conditions under which a topological semigroup has the Souslin property.

Key words: Colombia, semitopological, category, topological spaces, properties, conditions

INTRODUCTION

Let C be an epieflective subcategory of all
topological spaces (in what follows top (Herrlich and
Strecker, 1997) and abusing terminology, let C be the
functor associated with C. By Hernandez-Arzusa and
Hernandez (2017) it is proved that each semitopological
(separately continuous) algebraic structure in XeTop 1s
reflected mn C(X), also it is proved that if the functor C
respects fimte products then the topological (jomntly
continouos) algebraic structures are reflected. By
Tkachenko (2014), we can find similar results but only in
semitopological groups. In this research, we studied the
functors related to axioms of separation in the category of
topological and semitopological semigroups. Not having
mverse m the semigroup operation gives us certain
problems, for example, one of them is that not always the
quotient mappings induced by congruences are open
what happens m semitopological groups. For this reasomn,

we have considered in ours results topological
semigroups with open shifts these are studied in by
Ravsky and Banach (2016).

The fact that the classes of the T,-T; regular and
Tychonoff  spaces, constitute an  epiriflective
subcategories of Top is proved by Herrlich (1967) and
Tkachenko (2014, 2015a, b) are studied the related
functors to these reflections in the category of the
semitopological and paratopological groups.

We give the basic facts of the theory and the basic
notation. Additionally, we give examples of topological
(semitopological) semigroups with open shifts in order to
prove that this class contams the class of the
semitopological (resp. paratopological) groups as a proper
subclass.

We initially construct the reflection on T, spaces of
semitopological monoids with open shifts (Theorem 2.5).

In relation to T, semigroup we gived a partial answer
{(Corollary 2.4) to the following question: if S 15 a
topological semigroup and ~ is a closed congruence on
S is S/~ a topological semigroup. This problem is
addressed by Gonzalez (2001) and (Khosravi, 2012) but
unlike these researches in our results the condition being
T, 1s not assumed for semitopological semigroups.
Moreover, we give a characterization of the reflection on
T, spaces for topological monoids with open shifts
{Corollary 2.7) where we proved the topological monoid
with open shifts are quasiregular spaces, obtaining a more
general result than Theorem 2.4 by Tkachenko (2014).
Finally, we construct the reflection on regular spaces for
topological monoids with open shifts (Theorem 2.8).

We find results about epireflections that preserve
products in the category of semigroups. Analogues
results are found by Tkachenko (2015a, b) but in the
category of groups.

We use the C-reflections to study the cellularity of
cancellative topological monoids with open shifts. Given
C.-reflection preserves the cellularity (Theorem 4.5), we
can obtain some results releted to the Souslin property
without using separation axioms. By Tkachenko (1983)
proved each o-compact topological group has countable
cellularity, this result was generalized by Uspenslij (1982).
Later, Arhalhensky and Reznychenko (2008) extended it
for Hausdorff o-compact paratopological groups by
Arhangel’skii and Tkachenko (2008).

MATERIALS AND METHODS
Preliminaries: A semigroup is a set S#@, endowed with

an associative operation. If also S has neutral element, we
say that S 13 a monoid. A mapping £ S-H between

Corresponding Author: Julio Cesar Hernandez Arzusa, Ecuaciones Diferenciales Research Group, Universidad de Cartagena,

Cartagena, Colombia



Res. J. Applied Sci., 13 (11): 673-680, 2018

semigroups is a homomorphism if fixy) = f(x)f(y) for
all x, yeS. A semitopological semigroup (monoid) consists
of a semigroup (resp. monoid) S and a topology T on S
such that for all a3, the shifts x~ax and x-xa (noted by
1, and r,, respectively) are continuous mapping of the S to
itself. We say that a semitopological semigroup has open
shifts if for each aeS and for each open set U in 3, we
have 1(U) and r(U) are open sets in S. A topological
semigroup (monoid) (paratopological group) consists of
a semigruop (resp. monoid) (resp. group) S and a
topology T such that the operation of S as a mapping of
Sx3-5 15 continuous when SxS 1s endowed with the
product topology. An congruence on a semigrouop S 1s
an equivalence relation on S, ~ such that if x~y and a~b
then xa~yb. If S is a semitopological semigroup then we
say that ~ is a closed congruence if ~ is closed in SxS. If
~ ig an equivalence relation in a semigroup (monoid) S
and m: S-8/~ is the respective quotient mapping, then S/~
15 a semigroup (monoid) and © an homomorphism if
and only if ~ 18 a congruence (Gonzalez, 2001),
(Theorem 1).

A class C of topological spaces 1s called closed under
super topologies if (X, 1)eC implies (X, p)C for each
topology p on X finer than t.

Let X be a topological space a cellular family in X is
a non empty family of non empty open sets in X and
pairwise disjoint. The cellularity of a space X, noted by
c(X) is defined by:

¢(X) = sup{ U |: U iscelluler familyin X} +N,

If o(X) = N, we say that X has countable cellularity or
X has the Soushn property. If X 1s a topological space and
AcX. We will note by Inty and Cl;(A), the interior and the
closure of A in X or simply Int{A) and A, respectively,
when the space X 1s understood. An open set U mn X 1s
called regular open in X if Int U= 17, Tt is easy to prove the
regular open ones form a base for a topology which we
will call semiregularitation of X, X endowed with this
topology, we will note by X, X 15 called quasiregular if
¥ is a T, space.

If C is an epireflective class of TOP, X is a topological
space and the morphism 1: X-B is the C-reflection of X
then, given the reflections are essentially unique in order
to agree with the notation, we will note r by @ % and B by
C(X). The functor nduced by the C-reflection, we will
note it by C, therefore, if £ X-Y 1s a continuous
mapping there 1s an unique continuous mapping C(f):
C(X)~C(Y) such that C(H)°Q 3= @ 'f CrCs, C, will note
the class of the spaces, T;-T,, regular and Tychonoff,
respectively.
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A topological space X is called o-compact if it is
countable umon of compact subsets. X 1s called
sequentially compact if each sequence in X has a
subsequence converging i X.

The following examples, guarantee the class of
cancellative topological monoids with open shifts is non
empty and it is bigger than the class of paratopological
groups.

Example 1.1: Let R™ = [0, <), together with the usual sum
in R, endowed with the generated topology by the
sets [a, =) being acR". Then R* is a compact cancellative
topelogical monoid with open shifts and it is not a group.

Example 1.2: Let G be a paratopological group that is not
a topological group (for example, the Sorgenfrey line) and
let U be an open non symmetric (1" #1J) neighborhood in
G of the neutral element e of G. If S =U__, then Sis a

cancellative topological monoid with open shifts that is
not a group.

Example 1.3: It 15 possible to obtain open shifts from
semitopological (topological) monoids. Indeed let S be a
semitopological (topological) monoid and let N, be an
open local base of the neutral element e of S. The set v =
falU:UeN,, aeS}tU {Ua:UeN,, aeS} generates a topology
of semitopological (resp. topological) moneid with open

shifts.

Example 1.4: Let 3 = {(x, y)eR*y20} endowed with the
usual sum and with the generated topology by the family
{1V} s where V, = {(x, y): y20}. Then S 1s a cancellative
topological monoid with open shifts. Moreover, S is not
T, space.

Example 1.5: Let S be an infimite cancellative semigroup,
if 5 is endowed with the cofinite topology, then S is a
cancellative semitopological semigroup with open shifts.
The following result clarifies the action the epi-reflection
functor for subcategories closed under supertopologies.
By Herrlich and Strecker (1997) for the proof which is
straightforward anyway).

Proposition 1.6: Let C be an epireflective class of top.
Then C(X) is a quotient of X if and only if C is closed
under super topologies. The theorem 3.4 by Tkachenko
(2014) allows us to obtain an inner characterization of the
C,-reflection in the category of semitopological groups,
the following corollary is more general.

Proposition 1.7: TLet C be epireflective
subcategory of top closed under super topologies. Then

C(X) = X/R,.

an
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Where:
RC = n{R: Ris an equivalence relationand X/ ReC }

Proof: From proposition 1.6, C(X) = X/R,, being R, an
equivalence relation in X, Tf 7: X-3X/R. is the, respective,
quotient mapping, since, R.cR,, the mapping f
X/R. - X/R,, defined by f (1(x)) = @ x, 13 well defined,
byective and quotient, therefore, 1t 1s homeomorphism, so
that, R, = R, this completes the proof. We can find the
proof of following proposition by Acosta and Rubio
(2006) where the reflection on the T; spaces 1s called
the T,-identification.

Proposition 1.8: Tet X be a topological space. Then
¢ (cy X)((cy, x) (U = U for each closed or open set in x,
therefore, @(c;, x) 15 an open and closed mapping.
Also, (e, x) (X)#@(c, x) (v) if and only there exist U, open
in x such that Un {x, ¥} is a singleton. The following
theorem appears by Hernandez-Arzusa and Hernandez
(2017) for more general algebraic structures, we give a
similar proof for semigroups.

Theorem 1.9: Let S be a semitopological semigroup
(monoid) and C an epireflective class of top. Then C (S) 1s
a semitopolgical semigroup (resp. monoid) and ¢ is a
homomorphism.

Proof: For each a€f, the contmuous mappings 1, and r,
allow to define continuous mappings C(l,) and C(r,)
from C(8) to itself for CO(py(x)) = ¢y (ax) and Clr (@
(x)) = @qy(xa). Therefore, the operation on C(S) defined
by @4(x) ©(y) = @4xy) 13 well defined and also ¢4 1s a

homomorphism.

Proposition 1.10: Let S be a semitopological semigroup
(monoid) and let ~ be a congruence in S and let w: S-S/~
the respective quotient mapping. Then S~ iz a
semitopological semigroup (resp. monoid) and m is a
homomorphism. Also, 1f S 1s a topological semigroup and
TXT 18 quotient mapping, then S/~ is a topological
semigroup (resp. monoid). In particular if 7 is open and S
is a topological semigroup, then the same is true for S/~.

Proof: Let S be a semitopological semigroup, if ~ 1s a
congruence, obviously the operation defined by
n(x)*n(y) = n(xy) for each x, ye3 is well defined and
associative on 3/~, therefore, (3/~, *) 1s a semigroup and
T 18 a homomorphism. If S 18 moenoid and e is its neutral
element, then m(e) is the neutral element in S/~ therefore,
S/~ i3 a monoid. Since, T is quotient mapping, we have
* 13 separately continuous and n comsequence we

have S5/~ 1s a semitopological semigroup. If S 15 a
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topological semigroup and mxT is a quotient mapping,
then the continuity of the operation on S implies that * is
continuous, therefore, S/~ would be a topological
semmigroup.

Since, if X es T, es, then Cy(X) 18 T, (From
Proposition 1.8 @(c,, x) is open and closed mapping), the
proof of the following proposition is trivial.

Proposition 1.11: For each topological space X, we have
CuX) = C(CX)).

RESULTS AND DISCUSSION

Related functors to axioms of separations in semigroups
Proposition 2.1: Let S be a semitopelogical monoid where
right shufts or left shifts are open and let~a congruence on
S. Then, the respective quotient mapping m: S-S5/~ is
open.

Proof: Only we will prove the statement when the left
shifts are open, the right case is analogue. Proving that ©
is open, we will proof that '(m(1J)) is open in X for each
U open in X. Indeed let x be in ' (m(U)) where U is open
in X Hence, there is ueU such that w(x) = m(u).
Since, 1,(e) = u, we can find a neighborhood of e, V, such
that uVcl. We will prove that x Ve '(m(U)), this would
prove that xelnt ©'((U)) and therefore 1"'(n(U)) would
be open. Let texV, then t = xv where veV. Since, ~ 15 a
congruence, we have that m(t) = n(xv) = x(uv)cn(l),
therefore, t = xvern {m(1), this completes the proof.

Since, the class of the T,, T, and T, space are closed
for supertopologies, then from propositions 1.6, 1.9, 1.10
and 2.1, we have the following corollary.

Corollary 2.2: If S 13 a topological monoid with open
shifts, then C,(3) 1s a monoid for each 1€{0, 1, 2}.

Proposition 2.3: Let X be a topological space and ~ an
equivalence relation on X. Then, if X/~ 18 T,, ~ 1s closed
XxX. The reciprocal holds if the quotient mapping
KoK/~ i3 open.

Proof: Let us suppose that (x, y)&~, then T(x)#w(y), if 2/~
is T, there are open disjoint neighborhoods U, and U,
of m(x) and w(y) in X/~, respectively. The continuity of ©
guarantees that there are neighborhood V,, V,, of x and y
in X, respectively, such that m{V_ic U, and m(V )=l It
follows that (V_ =V ) N~ = e This proves that ~ is closed
in X=X, Reciprocally, let us suppose that 7 1s open and ~
15 closed and let us prove X/~ 13 T, Indeed, let us
()= n(y) where x, yeX. Since, n(x)=m(y) and ~ 1s closed,
we can [ind open sets in X V, and V,, containing to x and
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y, respectively, such that (V_ xV )N~ = &. It follows that.
But n(V,) and (V) are neighborhoods of 7(x) and m(y),
respectively, this proves that X/~ is T,. The next corollary
easily follows from propositions 2.1 and 2.3.

Corollary 2.4: Let S be a semitopological monoid with left
shift s or right open shifts and let ~ be a congruence on
S. Then 8/~ 1s T, if and only if ~ 13 a closed congruence
in3S.

Theorem 2.5: T.et S be a semitopological monoid with left
shifts or right open shifts, then C,(3) = S/~ where ~ 1s the
smallest closed congruence on S.

Proof: Let ~ be the smallest closed congruence on S and
let m: S~ 53 be the respective quotient mapping. Corollary
2.4 guarantees that S/~ is T, therefore, there is a
contimuous mapping g: C,(3) such that g°@(S, C,). By
proposition 4.3, theorem 1.9 and given that the T,
spaces class 15 closed under super topologies, we have
C,(S) = 8/= being = a congruence on S which is closed by
Proposition 2.3. Therefore, ~—=, so, we can define a
continuous mapping h: 8/~-8/= such that hen = @(8, ;).
It easily follows that h 1s the mverse of g, this completes
the proof.

Theorem 2.6: T.et S be a topological semigroup with open
shifts, then S, 1s a topological semigroup. Also, if Sis a
monoid, then S is a quasiregular monoid.

Proof: Let S be a topological semigroup with open shifts.
Let U be a regular open in S such that abeU being a, beS.
Given that the operation on 3 is continuous, we can find
open sets in S, V and W, containing a and b, respectively,
holding VWcU. The continuity of the operation and the
fact that Int(CI(V))CI(W) 1s open in S, imply:

mt(\*f)mt(mgm(ﬁ): nt(nt(Ve1(w )
Int (VW ) M

()

clnt(U)=U

Therefore, S; is a topological semigroup. Let us
suppose S 15 a monoid and let us prove that 3 18 a
topological monoid T,. Obviously S, is a monoid and we
have already proved S, is a topological semigroup it
remains to prove that it is T,. Tndeed let U a regular open
m and x€U. Since, the operation in S 1s contmuous
and ex = x we can find an open neighborhood of e, V and
a open neighborhood of x, W such that VWcU. Therefore:
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xelnt(W) gWg VW = Int(ﬁ) o Int(ﬁ)

glnt(ﬁ) (2)

glnt(lj):U

This proves that S, is T,. From similar argument to
the proof of theorem 2.6 of Tkachenko (2015a, b) and
theorem 2.6, we obtain the following result.

Corollary 2.7: If 8 is a topological monoid with open
shifts, then C,(S) = S, From proposition 1.11, theorem 2.6
and corollary 2.7, we have the following theorem.

Theorem 2.8: Let S be a topological monoid with open
shifts, then C(S)= C,(S,).

Epireflections preserving products: Given an epireflective
subcategory of top, C, we say that the epireflection
induced by C preserves products in a subcategory D of
top, if C(J[,. X) = [La C(X) for each family {X}., of

spaces in D.

Theorem 3.1: Let C an epireflective subcategory of top
closed under super topologies satisfymg [ [, XeC 1f and
only if XeC for each jeJ. Then, the C-epireflection
preserves products in the category of semitopological
monoids with open shufts.

Proof: T.et {S}. be a family of semitopological
semigroups with open shifts and let C an epireflective
subcategory of top closed under super topologies.
Proposition 1.6 and theorem 1.9 imply C(J .., S0 = ([
SV/R, being R a congruence in [ [, S;. Given kel, let us
define the following relation in X,: x~.y if there exists x,
¥& [T S, such that 9(C.] T, $) () = @(C.]],S) (x) and
D) = ply), being p. [[ic S~ S, the k-th projection. It 1s
easy to prove that ~, is a congryjence on X, Let my
¥,~X/~, the respective quotient mapping. From
definition of ~k for each keK, we have f: [[.,(S/~1)~(] [
S)/R, given by f((m(x)) ) = @(CLS)(x) 1) is a
bijection. Proposition 2.1 implies m; is open for each i€l,
therefore, f is a homemorphism, the hypothesis over C
guarantees that S/~ C for each 1=, therefore, for each 1£1
we can define a continuous mapping g C(S)~S/~1 by
g(p(C, S)(x)) = m(x), for each xeS, Therefore, [ [, g [«
C(S)-] [ia(S/~) is continuous, so that, f°T[.g:
[TaC(S)~C{ e S) is continuous. On the other hand,
since, [ [, C(S) €C, we can find a continuous mapping k:
O T 8)-TToC(S) such that k°p(C, T ) = @(C, S
It is easy to prove that k and £°] ], g, are inverses of each
other. This completes the proof.
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Tt is known that the C-reflection does not preserve
products (introduction of Husek and Vries (1987),
1241, 2, 3, t}. However, C, 140, 1, 2} preserves products
in the category of semitopological groups (propositions
3.3, 3.4 and 3.5 of Tkachenko (2015a, b)) while C, and C,
preserve products in the category of paratopological
groups (Proposition 3.6 of Tkachenko (2015a, b). In the
two following results we give sumilar results in the
semitopological and topological monoids with open
shifts. Given C, ie{0, 1, 2}, satisfies the hypothesis of
theorem 3.1, we have the following corollary.

Corollary 3.2: The C;-reflection preserves products in the
category of semitopological semigroups with open shifts,
140, 1, 23,

According to lemma 3 of Mrsevic ef al. (1985), we
have the semiregularization respects products, therefore,
from corollary 2.7, theorem 2.8 and corollary 3.2, we have
the following theorem.

Theorem 3.3: The Ci-reflection preserves products in
the category of topological monoids with open shifts,
1€4{3, 1}.

The cellularity of topological monoids
Proposition 4.1: c(X) = ¢(Cy(X)) for each topological
space X.

Proof: Given that Cy(X) is a continuous image of X,
we have ¢ (Cy(X))<c(X). Let x a cellular family in X,
proposition 1.8 guarantees that @' (¢, x) @(c;, x) (UY) = U
for each Ueu, therefore, {@(c, x) (U) Ueu} 15 a
cellular family in Cy(X), so that, ¢(X)<c(Cy(X)) this
completes the proof.

Proposition 4.2: ¢ (X) = o(X;,) for each topological
space X.

Proof: Given that X, 1s a continuous mmage of X, we have
o(X,)<X Letua cellular family in X and let Uand V be in
u, therefore, UnV = @. Since, Tand V are open sets in X,
we have int Unint V = a. Also, since, for all Ueu it holds
UcintU, we have int U #o for all Ugu. This proves that the
{intU: Ueu? is a cellular family n X, therefore, ¢(X,),
this completes the proof. From Propositions 4.1 and 4.2
theorem 2.8, we have the following corollary.

Corollary 4.3: Let X be a quasmegular space, then
e(X) = e(CLX)).

Corollary 4.4: If X 1s quasiregular space, we have
¢(X) = o(C(X)) for each 1240, 1, 2, 3, 1}.
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Proof: Let X be a quasiregular space. By proposition 4.1
and the definition of cellularity it is clear that ¢(C(X))<c
(CoX)) and o(CLXN) 2e(CX))<o(C(X)) 2e(Co(XD) = o(XD.
Corollary 4.3 guarantees that co(X) = o(C(X)), tls
completes the proof. From theorem 2.6 and the corollary
4.4, we have the following theorem.

Theorem 4.5: Let S be a topological monoid with open
shifts. Then the following statements are equivalent:

S has cellularity countable

C,(3) has cellularity countable
C,(3) has cellularity countable
C,(8) has cellularity countable
C,(8) has cellularity countable
C.(3) has cellularity countable

Lemma 4.6: If S is a cancellative topological semigroup
with open slufts, then C,(3;,) 1s cancellative.

Proof: Let S be a cancellative topological semigroup with
open shifts and let us see what Cy(S;) is cancellative.
Indeed, let us suppose @gss(ox) = @(CiSg)cy) but
©(C,S)(x) =@ (G834 ) (). From proposition 1.8 we can find
an open regular in S,, U that without loss of generality, we
can assume that x€U and y¢U. Since, 1. S-¢S is a
homemorphism, we have ¢U 1s open regular in cS.
There exists an open set V in S such that cU = VneS.
Given that ¢S is open in 5, we have cxecll = int(Cl (1))
= cSninty(Cly(V)). Since, S is cancellative, cy#cU and
i consequence cy&mt(Cl{V)) but it (Cl(V)) is open
i S, from proposition 1.11, we can say @(C;S;)
(cx)#@(C3,,)(cy) obtaining a contradiction, this implies
that @(C;S.)x)=@(C 5 )(y) and therefore, C(S,) 1s
cancellative to the left, proving that is cancellative to the
right 1s analogues.

Tkachenko (2015a, b) proved that the o-compact
paratopological groups have countable cellularity. Tn the
following two theorems we give analogues results for
topological semigroups but given that we do not have
group operation, we have changed the 0 -compactness for
compactness in the first theorem and in the second
theorem, in addition to the o-compactness we have added
the sequential compactness.

Theorem 4.7: Tet S be a compact topological monoid
cancelative with open shifts, then S has countable
cellularity.

Proof: Let S be a compact topological monoid cancelative
with open shifts from proposition 1.11, corollary 2.2,
theorem 2.6 and lemma 4.6, we have C(S) = Cy(S,) 1s a
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cancellative topological monoid which is compact. Since,
S is compact, theorem 2.5.2 of Arhangel’skii and
Reznichenko (2005) implies that C(S) s a compact
topological group and from corollary 2.3 of Tkachenko
(201 5a, b), we have C(S) has countable cellularity. Finally,
applying Theorem 4.5, we have S has countable
cellularity.

Theorem 4.8: If S is a o-compact and sequentially
compact cancellative topological monoid with open shifts,
then S has countable celullarity.

Proof: Let S be a o-compact and sequentially compact
cancellative topological monoid with open shifts. Lemma
4.6 guarantees that C(S) 1s cancellative, also bemg
continuous 1mage of 3, we have C,(S) 15 0-compact and
sequentially compact. Theorem 6 of Bokalo and Guran
(1996) implies that C(S) is a o0-compact topological group
and from corollary 2.3 of Tkachenko (2015a, b), we have
C(S) has countable celullanty. If we apply theorem 4.5, we
have C(S) has countable celullarity.

CONCLUSION

Finally, Tkachenko proved that the o-compact
paratopological groups have countable cellularity. We
present similar results for compact cancellative
topological monoids with open shifts (theorem 4.7)
and o-compact and sequentially compact cancellative
topological monoids with open shifts (theorem 4.8). The
T,-Ts, regular and Tychonoff spaces are defined
according to Tkachenko (201 5a, b).
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