Research Journal of Applied Sciences 11 (12): 1545-1552, 2016

ISSN: 1815-932X
© Medwell Journals, 2016

Asymptotic Analysis of the Boundary Layerby Matching the WKB Solutions of the
Inner and Quter Layers of a Neo-Hookean Cylindrical Shell

"Taherh Shokuhi, *Majid Pazand and *Nasrin Hamidi
'Department of Applied Mathematics,
"Department of Agricultural Economics, Higher Educational Complex of Saravan, Saravan, Iran
*Ministry of Education, Zahedan, Iran

Abstract: We analyzed and compared the asymptotic outer, inner and the matching selutions with the numerical
counterpart results of the eigen-value problem of a neo-Hookean elastic cylindrical shell of arbitrary thicknesses
subjected to an external hydrostatic pressure. In order to study thin-walled shells (i.e., a thin layer between the
two regions Al-1 = O(1) and Al-1 = O(1/n), where Al and al are the mner radu of the shell before and after
deformation respectively on 0<Al<l) and for the purpose of matching the two regions, it is necessary to
reconsider the asymptotic solutions obtained previously and offer the summarized relations of the relevant
eigenvalues, i.e., 1 =a,/Al. For analyzing thin-walled shells, the theory of boundary layer and also Van Dyke’s

matching rule has been employed.
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INTRODUCTION

WEKB theory 15 a powerful tool for obtaining a global
approximation to the solution of a lmnear differential
equation whose highest derivative 1s multiplied by a small
parameter like, it contains boundary layer theory as an
special case. The boundary layer theory shown how to
construct an approximate solution to a differential
equation containing a small parameter. This construction
requires one to match slowly varying outer solutions to
rapidly varying inner solutions. We will consider the
method of matched asymptotic expansions applied to the
fourth-order  differential equation
mcompressible isotropic homogeneous elastic shell. The
purpose of this study 1s to introduce the notion of
matched asymptotic expansions. Asymptotic matching is
an 1umportant perturbation method which 1s used often in
both boundary layer and WKB theories to determine
analytically the approximate global properties of the
solution to a differential equation. Asymptotic matching
is usually used to determine a uniform approximation to
the solution of a differential equation and to find other
global properties of differential equations such as the
eigen values. The procedure of finding the leading-order
boundary layer approximation applied to the solution of

related to an

a differential equation of an elastic shell may be
formulated and one can obtain and asymptotically match
the layers in an overlap region. The self-consistency of

the boundary layer theory depends on the success of the
asymptotic matching. Ordinarily, if the inner and outer
solutions match to all thicknesses, then boundary layer
theory gives an asymptotic approximation to the exact
solution of the differential equation. The possibility of
matching the outer solution with the inner selution to
form a composite selution is discussed. It should be
noticed that since the outer solution i1s independent of
Al, the composite solution 15 simply the inner solution
according to Van Dyke’s matching rule (Bush, 1992).
Therefore, if Van Dyke’s matching rule works for this
problem, the mner solution should also be valid in the
outer region where Al-1 = O(1). Tt is verified here that the
inner and outer solutions can be matched at leading order
but not at the second order. The failure of Van Dyke’s
matching rule at second order is discussed i details on
(Fu, 1998). We can show and indeed provide a
uniformly valid curve for p, agamst Al for Al-1 = O (1)
and Al-1 = O(1/n) by solving numerically Eq. 19 with the
method (Fig. 1)
(Seryarampour, 2010). Since, the numerical solution
corresponding to Eq. 19 fails for A1-1<O(1/n) and in order
to obtain a proper thickness, we have to continue our

use of compound matrix

asymptotic analysis for the case of two term inner
solution. Fu and Lin (2002) performed successfully
matching the outer and inner solutions  concerning  the
analysis of the buckling of an spherical shell made
of an elastic Neo-Hookean material which perfectly
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Fig. 1: Neutral stability curves for n = 20. Solid lines:
numerical result; dashed lines: one-term
asymptotic result; dotted limes: two-term
asymptotic results

conforms the results obtained of thin shells with the
numerical results but this conformation has not been done
mn cylindrical tube which 1s going to be study here.

Definition of the problem: We consider an incompressible
isotropic homogeneous elastic shell andassume that the
outer surface of the shell is subjected to a hydrostatic
pressure and that the tube 13 n a state of plain
strain. The co-ordinates of a representative material
particle in the un-deformed and deformed states are
(R, ©, Z) and (r, B, z), respectively. Thus, the hollow
cylinder in its un-deformed configuration is defined by
0<Al =R = A2 0=0= 2%, 0 =7 =1, the plane-strain
deformation is denoted by:

r=1(R) (1
Where:
r = The radial coordinate of a material point
which is at a distance
R = The radial coordinate) from the center of
the shell before the pressure 1s applied
Al and A2 = are the wmer and outer radii, respectively

and the deformed state 1s:

O<al €r <a2, 009 <2, 0<z <], (2)

where, al and a2 are the deformed inner and outer radii,
respectively. We assume that:

al =ulAl and a2 = u2A2 (3)

where pl and u2 are controlling parameters which
for the compression problem satisfy O<pl, p2<l.
Incompressibility implies no volume change andso pl and
W2 are related by:

(DA = (- DA?
PN W
Ww, = 1-(1—“..1 )E, 0<A1 <1
2

Either pl or p2 can be taken as the controlling
parameters and the aim ofa linear stability analysis 15 to
find the value of pl or p2 at which the shellbuckles. We
shall assume that all variables and perameters which
have adimension of length have been scaled by AZ2.
Thus, we have:

a, = WA, a,=
12 151 22 j (5)
W =1- (1AL, 0<A <1

The eigen value problem resulting from a linear
stability analysis can be found m Haughton and Ogden
(1979) and also in refs (Sanjaranipour, 2010) and consists
of solving the following fourth-order differential equation
for a neo-Hookean material:

—k2(3+n3)
6 % o
V'”+[+3J+QV'”+ r
ror k(1-n*] (5-2n°)
r i r
K'(3+n') K (5+n’
QZV”{ (r—;n)+ (;n } (6)
k(1-4n*] (1+2n°
ERUNE
2 . |
QBV”+(nZ—1)Frk§+i§+(nr4 WQZV—O
Subj ect to the boundary conditions:
V”+1V'+L2_1V:O (7
T T
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onr = al, a2, where V = V (1), a pnme denotes
differentiation with respect to r, n is the longitudinal

mode number and:
=AN1-p ) ©)

Tt is necessary to mention that this problem bas been
solved by the use of the asymptotic WKB method and the
results are related to the outer 1.e., Al-1 = O(1) and inner,
ie, Al-1 = O(1/n) solutions separately and are compared
with the counter part numerical results obtained
throughout the whole region, 1.e., 0<Al<1. Our main aim
on this study 13 to solve tlus logarithmic layer which
appears in between the two mentioned layers with the
help of the Van Dyke matching rule and also the boundary
layer theory. In order to be able to analysis thus
thin-walled shells, first a brief description about the
previously  studied inner and outer solutions
(Sanjaranipour, 2010) should be written down here.

MATERIALS AND METHODS

Asymptotic analysis for thick shells in order to find
the Boundary layer. The linear eigen-value problem 1s to
solve Eq. 3 subject to Eq. 8-9 onr = al, a2. In order to find
the eigenvalue p, and i large n limit, we look for a WKB

solution eg., Bender and Orszag (1978) and
(Samarampour, 2010) of the following form:
- : 10
erxp(nj-als(u)du) (10)
§= S+1S +is+ —nz (1)
n n’ n”
By substituting relations Eq. 10-11 in Eg. 6-8

and by equatingthe coefficients of the like powers of n
with the aid of Mathematica, we obtain anumber of
differential equations for S, S,....
independent solutions for S. We
solution by S(i) and write:

There are four
denote the ith

1
gl ZHSEI)JFS?)JFH_ZSS)J“_ (12)

Where the details of SV, 8,%, 8%, .. (1=1,2 3, 4 are
given on (Sanjaranipour, 2010). All the above
functions are analytic in the region of interest, ie.,
O<al =r=a2 = 1. Now, we focus on the general solution
which for V 1s given by:

'\f:ik1 exp(n'l;s(')(u)du) (13)

where, Ki are constants and by substituting Eq. 13 and
the relevant derivativesinto the ecuations of the
boundary conditions Eq. 7 and 8 we obtamn a matrix
equation of the form:

i (i=1,2,3,4) (14

where, (C,) 1s given by:

Fl(al)FZ(a1)F3(al)F4(al)
_ G,(2,)G,(a,)G,(a)G,(a)) 1s)
* |EE(a)EF(a)EE(a)EF (a)
E1G1(31)E2G2(3-1)E3G3(31)E4G4(31)

The constants E and function Fi(r) and Gi(r) in the above
matrix are defined by:

E, :exp(nIaES(l)(u)du) (16)

() =(s7) + L) s Le 2L A7)

(18)
K n*-1) 2n* |1
{Q[—ﬁ 7 JJF_zQ}_sz
T T T n
11nf-1 k(n2 —1)
+— +
n| r r’
Where:
Sy = Denotes differentiation with respect tor

a2 al = O(1)= The constants

E,andE, = Are exponentially large whereas

E,andE, = Are exponentially small. A none trivial
solution for (K;) requires:

det (Cij) =0 (19
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Which is the required bifurcation condition in the
large n limit. In order to show the dependence of mul on
Al, this algebraic bifurcation condition should be solved
numerically. Because of the appearance of E, and E; in C;
which are exponentially large, we first find more explicit
results and then in order to be able to compare this
asymptotic results with the counter part numerical ones,
the numerical determmant method (Haughton and Orr,
1997) is used and presented.

Asymptotic results for A1-1=0(1): For Al-1 =O(1), we
have a2 -al = O(1). It means that a2>>al and clearly the
term proportional to B B, 1s exponentially dommant and
hencewe may write Eq. 19 as:

detC, {Fz(al) 5(31)}{

EE, G,(a,} G,(a)
+EST=0

Fa) Fa(al)}
G,{a,) G,(a) (20)

where, E.S.T. stands for exponentially small terms. By
solving the matrix equation Eq. 14 and finally by
expanding i termsof 1/n, for the case of Al-1 = O(1), we
obtain:

03522 37132, @1

n n

W™ =0.5436 +

as remarked earlier, this expression is independent of Al.
Thus fact ic confirmedby our numerical results shown in
Fig. 1.

Asymptotic results for A;-1 = O(1/m): Tt is clear from
the Fig.1 that by increasing Al, pl is constant on
Al-1 = O(1). Since for A,-1 = O(1/n), ara,is small, the
exponentials F, and E, are no longer exponentially large
and Eq. 20 fails to approximate Eq. 19. It can be deduced
that B, and E, become O(1) and hence all the C;’sbecome
O(1) when Aj-1 = O(1/n). In the latter regime we write:

A :1+l§ (22)

Where £ is an O(1) constant and look for an asymptotic
solution for p,ofthe form:

W = N (23)
n:

where ;and , are to be determines. On substituting Eq. 22
and 23 in Eq. 5 and 9 we have:

a, :1+l(2+2§)+i22§+a2 —1+1[2+1§—aJ .....
n n n

1

(24)

By substituting the new a,, a, and k from Eq. 24 into

Eq. 15 and by collecting the coefficients of the leading

order terms of det(C,)) = O with the aid ofMathematica, we
obtain the following simplified expression:

162(1+ 22)2 —(1+ Az+ 27" +7* )2 cosh(@ —E’]
7)@s)
+(1-dz+22"+2') cosh[§+ é} =0
z

where we used z = *, and multiplied the second and fourth
rows by 17 We may extract 1 by expanding;:

cosh{é—é]

z

cosh{é—é]
z

TS 26)
18 1080

and:

Eq. 25 and finally get:

1

Equation 26 satisfied by 2 which is linear in 2 is
obtained by collecting the coefficients of the next
order terms in det (C;) = 0 with the aid of
Mathematica and is given by:

B +E, =0 27

Since, the relations of £and Z,are too long to be
written out here, we referthe reader to Eq. 27 in
(Samarampour, 2010). For any given mode number nand
any value of A, close to unity, the corresponding value of
£ is determmed by Eq. 22. Now by substituting £
from Eq. 26 mto Eq. 27 and by expanding wemay find 2 as
follows:

e e (28)

® 18 36 135

The value of s then calculated by using 1 and 2
from Eq. 26 and 28 respectively in Eq. 23. In Fig. 1, we
have shown the comparison between the numerical
results and the 1-term (corresponding to pl = 1) and
2-term (correspondingto p, = 1+ 2/n) asymptotic results
for n = 20. We see that the 2-term asymptotic results
approximate the numerical results extremely well over the
region of their validity.
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In Fig. 1 we find that for n»1, p,is constant over
almost the entire region of 0 <A, <1 and decreases sharply
from this constant value to unity as A, tends to umty (the
thin shell limit). Comparison between WKB and the
numerical results shows that agreement 1s not good over
a thin region between A,-1 = O(1)and A,-1 = O(1/n) where
thus region has aboundary layer structure.

Solving boundary layer: We now arrive to the case of
forming a composite solution by matching the outer
solution Eq. 21 with the inner solution Eq. 23. As we
mentioned earlier the outer solution Eq. 21 1s independent
of A, and because of that the compositesolution is simply
the inner solution according to Van Dyke’s matching rule
(Bush, 1992). It 1s evident from the study has been done
by Fu in the caseof spherical shell (Van Dyke, 1975) that
Van Dyke rule works for this problem also, 1.e., themner
solution also valid in the outer region where Al1-1 = O(1).
By focusing on the Fig. 1ab we see that, thus is mdeed the
case for the leading orderinner solution but not for the
case of two-term inner solution. As mentioned on Eq. 3,
Van Dyke (1975) matching rule fails at second order.
According to the results obtained by Fu for the spherical
shell on Fu, 1998, it 1s seen that Eq. 19 does mdeed
provide a uniformly wvalid solution for Al-1 = O(1)
and Al-1 = O(1/n). However, the numerical solution
corresponding to Eq. 19 fails for A1-1<0(1/n) which will
be studied in the following section.

Asymptotic analysis for thin-walled shells: The
logarithmic layer is a thin layer between the two inner and
outerregions which a rapid change occurs in the value of
the dependent variable. For solving this logarithmic layer
1t 18 necessary to reconsider the layer on a thin regions
like Al-1 = O(e®), O»p = 2 and for matching the
twosolutions, we can use the theory of boundary layer
and also Van Dyke’s matching rule. If the boundary layer
is located in the region, the appropriate stretching
transformation is x = x-%,/0(€) the choice of the power p,
indeed more generally the choice of function d(£) to use
in the stretching transformation x = x-x,/0(€) is determined
by the need to represent the regionof rapid change
correctly. We must ensure that the boundary layer
solution contains rapidly varying functions. In order to
choose the boundary layer thickness, it is necessary to
seek a stretching transformation which retains the largest
number of terms mn the dominant equation governing ;.
Thus 1s referred to as the principle of least degeneracy by
Van Dyke (1975). It can be deduced from Eq. 25 and the
expression for ), that, as £-0, we have:

2 4
wl:l,é_, 3 ot
18 1080 (29)
2 3 4
1 —£+£+a—+... +..n
n 18 36 135

The mner expansion Eq. 29 13 not umiformly
valid for all n, because this asymptotic expansion
becomes disordered and hence invalid when £, and £,/n
are ofthe same order, i.e., when A,-1 = O(1/3/n2). For
matching outer and inner solutions and in order to
find a umform solution, we must find a thickness
which includes the region of rapid changes. This is
the regime we considern the next part.

Asymptotic results for A-1 = O(1/3/n2): For Al-1 as
small as O(1/3/m2), a, 1s close to a,and it 1s convenient to
define a new stretched variable x through:

r-a
x=—7",0<a <r<a, (30)
d4; — 4

Interms of x, the mmer and outer surfaces of the shell
correspond to x = 0, 1 and the governing Eq. 6 and the
boundary conditions Eq. 7 and 8 becomes:

dx’ r’ dx’

[{res) ey (1)
el s e

4 3
d V+Q{6+2k}8d V+

+
4 2
T T

k3(362+1)+1<2(562+1)+1<(6274) 31)

El

dx? 1 odx - dx’

esi—f{d () (1 )}3%@ (32)

2 1—¢? 3
R

] Z
T T

{(mﬂnj) k(fﬂﬂﬂ%v_o

r r
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These two boundary conditions hold onx =0, 1. For
convenience we have introduced € = 1/n, & = (a,-a,) n.
Now we write:

7 (33)

and look for a solution for p; of the form:

3
L T, A (34)
Wo=1+e™ e +e +....

For V we assume:

3
2 35
V=Vl +evP+evP 4’V 4L (35)

By substituting Eq. 34-36 into Eq. 31-33 and equating
coefficients of similar powers of €, we obtain a couple of
differential equations and boundary conditions which can
be derived and solved successively withthe aid of
Mathematica. By solving these equations up-to and
mcluding O(e), we find:

i —1—653-62[%5‘51 376" } (36)
18 2 18 1080

This solution for A -1 = O(€3/2) can be matched with
the solution Eq. 23 validfor A- 1 = O(€) by using Van
Dyke (1975) matching rule, 1.e., by substituting € = 1/n we
have p =n} which indicates that on the leading order u} is
matched with s . But it cannot be matched for two-term,
therefore, the mentioned thickness does not mnclude all
the rapid changes anticipated and hence, we should
continue our study further to reach to the proper
thickness. Tn terms of the original variables Al andn,
(Eq. 37) becomes:

Wi :1—in2(Al -1) _%_i
18 2n° 18 (38)

37 1
A, — 1 ———n'(A, -1+ O(—=)....
A -1 1080 A -1 (nj)

To determine the critical mode number at which ui attains
its minimum, we consider:

8“'1 :7ln(A171)27_371(A17 )2

on 9 n’ 18 (39)
37 5 1

— (A, -+ 0| —

270n( D (n“}

For A-1 = O(1/3/n2), the first term on the
right-handed side of Eq. 39 1s the only leading order term
and 1s negative. Thus, ui 1s a decreasing function of n. It
1s clear that the critical mode number cannot be of order
(A;-1)3/2. Tt should be noticed that du*/dp’ may become
zero if the first termcan be balanced by the higher-order
terms. This occurs when A-1 = O (1/n®) which is the
regime we consider i the next subsection.

RESULTS AND DISCUSSION

Asymptotic results for A;- 1 = O(1/n"): An inspection of
Eq. 37 shows that this asymptotic expansion becomes
invalid when €£2 = O(¢®). In terms of Al this is Al= O(e?).
Inthe new regime we write:

A =1t (40)

where 18 an O(1) constant and we look for the following
form of solutionsfor pul and V:

Wo=1+e®® e ety (41)
V=vVP e V@1V 1 VO 1. (42)

Where the expansions for pand Vo are deduced
from Eq. 36 and 37 by replacing £ by £*2®. By substituting
Eq. 40-42 into Eq. 31-33 and equating coefficients of
similar powers of €, we obtain an nfinite number of
differential equations and boundary conditions. As in the
pervious subsectiory, these equations and boundary
conditions can again be derived andsolved successively
with the aid of Mathematica. By solving these
equationsupto and including Q(e)’® we {ind;

T —162[l+iF2J+€3[liF2}
2 18 2 18 (43)

tet| g Ops Lpe I 10
135 36 18 9 8

We note that with @ replaced by (/e {/1/e,, p,iii and
reduces to equations p' and P, respectively. Thus
equation p'" include all the regions of rapid change and
can be matched by equationp,™ (i.e., (21s) directly. With
the use of Van Dyke’s matching rule by following form:

lim lim u™ = limlim u™ (44)

X—pos H—poo r—l r—l

where X and (x-x,)/8(2) = O(1), when x-~=c?, 8-0, we
obtain p, ™ h by replacing ® = (/€ into expansion Eq. 43

mach  — e2-0Olim i,

as follows L, i
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1ﬁ+...+6($+i+...} (45)

ch

where, p,™** is the expansion of either the inner or outer
approximationsin the matching region. We find the
following composite solution which 1sumformly valid for
AFl=0(€"),0<me=2:

out B 63

Mlcnmp 7“ 7& Scnmp Tt
b2 2 (46)
1

ats P 1
e (M D+ — D)+
8 9 18

A-1 = O(1) and A -1 = O(1/n®) by using p " We
have shown the composite solution 1s the cause of
the complete matching of the two regions A-1 =
O(1) and A-1 = O(1/n*). We compared neutral stability
curves of asymptotic matching solution (uniformly
valid curve for pand p, against A, for A-1 = O(1)
and A-1 =0(1/n*) by solving numerically Eq. 19 with the
use of Compound matrix method. Matching two regions
A-1 =0 (1) and Ai-1 = O(1/n*) (Fig. 2 and 3) solid line:
Numerical result. The numerical solution, pand p, for
n =20 are smaller than those forn = 15. We find a critical
neutral curve of Eq. 43 which is the envelope of the
neutral cwves corresponding to different mode
numbers. In terms of the original variables Al and n,
Eq. 43 takes the form:

1 5
=1 - (A, -]+

2n’ 18
1 5 1
— - —n(A -1y +0(—4]
2n” 18 n (47)
oL __5 (Alfl)z—i
on 18
2 3 1
(A, -1) +FF+O(FJ

By solving dp,"/Onss = Os we obtain the critical mode
number:
1 5

2
n=—+——(A -1 (48)
2ot
On substituting Eq. 48 into Eq. 47, we obtain the
following expression for the critical neutral curve which is
the envelope of the neutral curves corresponding to
different mode numbers:

1 13
b =15 (A -1 = (A 1)+
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Fig. 2: Neutral stability curve for n = 20 of the asymptotic
result obtained form matching two regions
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the asymptotic result obtained form
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Fig. 4: The solid lines represent the numerical results for
n=2>5 8 10, 15, 20, 40. The dotted lines are the
asymptotic critical neutral curves corresponding
to Eq. 48

We have shown the asymptotic results Eq. 48
together with the results from a fully numerical
mtegration. The validity of Eq. 48 1s obvious (Fig. 4).

CONCLUSION

On solving the fourth order eigenvalue problem of
the neo-Hookean cylindrical shell by WBK method which
has been done in two layers (i.e., outerA-1 = O(1) and
inner A,-1= O(1/n) on 0<A <1), we observe that athin
layer exists between the two solutions. In this study, our
main concern 1sto find and solve the asymptotic solution
of this logarithmic layer and finally compare this solution

with the counterpart mumerical one. Tn order to be able to
study this layer, we are writing down a brief description of
the asymptoticinner and outer solutions previously done
by M. Sanjaranipour (2010). ITn order to obtain the proper
thickness, the boundary layer theory and Van Dyke’s
matching rule were employed. For A,-1, we checked
different thickness (i.e., O (1/n). O (1/3n?) and O (1/n?).
Finally by obtaining a composite solution which 1s
uniformly valid for A -1 = O (£®) O<m <2, we could match
theouter region (A;-1 = O (1)) with the inner region
A;-1 = O (I/m). The asymptotic matching solution 1s
coincident with the numerical solution. A, critical neutral
curve which enveloped the neutral curves corresponding
to different mode numbers is also verified.
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