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Abstract: Value at risk is a statistical risk management technique that monitors and quantifies the risk level

associated with an investment portfolio. The maximum amount of loss over a specified time horizon with a given

confidence level 1s usually measured by this technique. The presented study aimed at estimating the
conditional value at risk for Tehran stock market data through two steps. First the volatility parameter 1s
estimated with a generalized-Quasi-Maxummum Likelthood Estimator (gQOMLE) and then empirical quantile of the
residuals is estimated using the estimated rescaled innovations.
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INTRODUCTION

Value at Risk (VaR) is a method of presenting the
market risk which basically combines the sensitivity of the
portfolio to market changes and the probability of a given
market change. It was the 1970°s and the 1980°s when the
concept was presented and financial institutions have
begun to discover the internal models in measuring the
risk as a whole. The credibility of this concept received a
boost in 1996 when the basel committee on banking
supervision proposed that banks could apply VaR to
calculate the regulatory capital recquired for general
market risk provided that they met certain standards
(Choudhry, 2006).

Value at nsk measures the maximum potential loss of
a given portfolio over a specific peried at a given
confidence level which is normally chosen to be 1 or 5%.
It 15 preferable to take mto account all the available
information by reasoning on the conditional distribution
of the returns (McNeil et al., 2005; Kuester et al., 2006).
Formally the (conditional VaR) CVaR of a sequence of
returns (1)) is actually the opposite of the «-quantile
of the conditional distributiony, defined as:

CVoR, (o) = finf{x plT,, =X

g,uét)Za}

One can find the alternative names of CVAR 1n
literatures as average value at risk, expected shortfall or
Tailed conditional expectation. Richt-arik and Wolf for
more details. CVaR is easily derived from the generalized
¢-taill distribution of a random variable X (which

represents loss). For more detailed discussion see
{Rockafellar and Uryasev, 2000). Rockafellar and Uryasev
(2000) proposed a linear program in Rockafellar and
Uryasev (2002) to optimize the CvaR of a portfolio.
Norm properties of CVaR were identified by Pavlikov and
Uryasev (2014), enriched by some 1deas of the researcher.
Assume the general conditionally heteroscedastic model
for log-returns:

r, =G,(0,n, ey

where, 1), is a sequence of independent and identically
distributed (ud) random variables which 1s independent of
1, i<t. B,€R™ is a parameter which belongs to a compact
parameter space @ and o° is generally referred to as the
volatility of returns which 1s a positive measurable
function of the past log-returmns defined as:

G, = G(eu): (r:—pr:_z:--;eu)

Simple example of above model 13 ARCH which has
been defined by Bollerslev (1986). Accordingly the
volatility model is calculated as:

VaRt (o) = -G, (eu )Soc:

where, €, 1s the ¢-quantile of the p; the distribution of the
inmovations. Needless to say, the Gaussian QMLE model
is the most widely used estimator of ARCH-type models.
Bollerslev (1986) also presented GARCH (p, q) Model as
a widely used example of Eq. 1 which is defined as
follows:
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rt = T]T:Gt

9 9
2 2 2
Gt = (DEI + Zaﬂ1rt—1 + ZBU]Gt—]
i=1 i=1

(2)

where, w;>0, @;20, PByz0. Note that 1, 15 a strictly
stationary and there exists s»0 such that E|r,|*<e.
Setting few regularity assumptions, Consistency and
Asymptotic Normmality (CAN) of this estimator 1s
achieved. For example, Francq and Zalkoian (2004) for the
case of standard GARCH and ARMA-GARCH Models,
Straumann and Mikosch (2006), Bardet and Wintenberger
(2009) for more general models. Horv and Kokoszka
(2003) also defined generalized non-Gaussian QMLE
(gQOMLE) and established their CAN under alternative
identifiability conditions. For the general model Eq. 1
(Francq and Zakoian, 2013) showed that particular
gQMLE lead to comvenient one-step predictions.
Francq and Zakoian (2015) proposed a gQMLE which
allows estimating a conditional VaR in one step and
compared this method with the more standard two-step
method which consists of estimating the volatility
parameter by Gaussian QMLE and the quantile of the
innovations by the empirical quantile of the residuals.

Asymmetric Power GARCH (APARCH) models
had been introduced by Ding ef al. (1993) which mcluded
the standard GARCH, the TARCH and GJR models.
Glosten et al. (1993). Let, x” =max {x, 0}, x =mn {x 0} the
model is defined as follows:

rt = tht

q a4
3 =3 =3 5
Gt = (DD + Eaﬂl + (rtt1) + 0"’10 - (71- 7t71) + ZB]DGt*J
=1

i=1

where, 8>0, w>0, =0, a;20, Byz0. When o>,
negative return has a higher impact on the future volatility
than a positive return of the same magnitude which is a
well-documented as “leverage effect™ Note that 6 = 2,
Uy = Wy leads to standard GARCH & = 1 will get to
TARCH Model and & = 2 leads to GIR model. For
more detailed information (Hamadeh and Zakoian,
2011).

MATERIALS AND METHODS

In this study, the conditional VaR is estimated by
mvestigating the use of gQMLE’s based on a generic
instrumental density h. Under mild regularity conditions
by Ghowrabi et al. (2016) the standard Gaussian

QMLE which is based on the instrumental density,
o) = ZM%). converges t.o the volatility parameter 6,
assume a continuous function H such that for any €®,
K>0 and any sequence X, we have:

Ko(x,,%,,....0) = 6(x,,%,....H(B,K)) (3)

which mdicates that the parametric form of the volatility
is stable by scaling. Given the observations 1, 15, ..., I, and
arbitrary initial values T for 120, we define:

8,(0) = 00,1,y aT BT O)

Now consider the QML criterion with the instrumental
density, h>0 as follows:

Qu(0) =Y £(1,5,(0)

with g(x, 0) = logl/oh(x/0). Then the (generalized) QMLE
is given by:
6, =argmaxQ, (9)

Note that the function g-Eg(1),, 0), takes its values in
[-e2, o] and has a unique maximum at some point o€(0, ).
Now we define the parameter 0, = H(0,, ¢) which belongs
to the compact parameter space @. Under mild conditions
presented m Ghourabi e al. (2016) almost surly
convergence of g-QMLE is achieved as follows:

Now for the next step we define:

m =1 (4)
o.

then the general volatility model 13 presented as:
VaR ()= —G,,,0,. (3
where, ("« is the ¢-quantile of 1, and:
8, . = H(8, — &) (©)

which 1s called the VaR parameter by Francq and Zakoian
(2015). Contrary to the one-step estimator, the resulting
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two step estimator of the VaR does not take advantage of
the (hypothesized) symmetry of the errors distribution.
For detailed discussion in asymptotic distribution of
two-step estimators of the VaR parameter we refer to
Bardet and Wmtenberger (2009) and Ghourabtn et al.
(2016). Under mild condition, 1f H 1s differentiable at (0,-,)
one may have:

0,G. Y G, ()

where, @=[0H(B.K/B8(8.K)] {5 the covariance matrix defined
in Francq and Zakoian (201 3). The simplest but often very
useful GARCH process is of course the GARCH Eq. 1
process defined as:

2 _ 2 2
Gt - (DU + aurt—l + BUGt—l

where, 0, = w,, , B,0e(0, «)x[0, «)=[0, 1]. For the
mentioned model we have:

Gtz = 2 Bln_l (o + G'DTLZ-J
1=1

Now assuming (Eg. 5 and 6), the model can be
reparametrized as:

L =om,
{cs: =0T ... OF)

In such a case, the matrix G defined in Eq. 7, can be
written as:
€ 0 0 2o
G.o=| 0 (&) 0 2%
0 0 1 0

Now for any 8', = (w’,, &', B',) we have:

o 2 .
_(DD +0"Drt71 + BD

.
(w01, OJBGt—(ee”)

(@, Oy, By ——L=

* 865—1(83) _
00

Sy e+ o =oie)

i=0

Using again the delta method, confidence intervals
for VaR(a) = 0,0, « at a given estimation-risk level can
be deduced, exactly as Francq and Zakoian (2015) did for
the VaR estimation method based on the Gaussian QMLE.

RESULTS AND DISCUSSION

Numerical studies: Tn this study, we are going to fit the
above mentioned models and methods to calculate VaR
on real datasets and evaluate their performance. The data
used 1n the study 15 the daily value of 3 stock market
indices, K-SHARQ (Shomal Sharq Shahroud Industrial,
http:/Aarww . shomalshargh.com.) NTORD (National Tranian
o1l refining and Distibution of Tehran, http:/www.
niorde.ir/index.aspx ?siteid=7 7andpageid=536), SORC
(Shiraz o1l refining company, http://www sorc.ir/sorc.ir.)
obtained from the data stream database services of
Tehran Over-the-Counter Market (OTC) (http://fwww.
ifb.r). Smee 2009, Iran has been developing an
over-the-counter market for bonds and equities. OTC
provides a complete available achieve of data, based on
different sectors and dates. Our sample covers daily log-
return data from early March 2013 to the end of May 2014,
when the historical data exist. To the best our knowledge,
this has not been addressed earlier via QMLE Method.

We report parameters of GARCH 1 and GIR 1 based
on for two different instrumental densities h, namely the
Gaussian and Student (v) distributions for log-returns in
Table 1 and 2. The estimated standard deviations are
given into brackets. Then for nt~[(1, 2, d), d= 1.7, 2, for
Gaussian and Student (1) distributions the parameters of
models are estimated in Table 3 and 4. Finally in Table 5
and 6 we report the VaR parameters at levels ¢ = 0.05and
¢ =0.01. All the programs are done in Matlab (MATLAB
emulation package). Figure 1 we can see log-returns of all
indices versus time.

Generally our empirical results reveal that according
to the tables, the more volatile return environment leads
to significantly wider VaR distributions, i.e., VaR point
estimates are assoclated with higher uncertamty. This
effect is most pronounced in (more complex) models that
react faster to volatility changes as it is the case for our
GARCH and GJR Models in SORC data.

Another important finding is that over the 3 indices,
it 18 clear to note that in GARCH (1, 1) Model, for
K-SHARQ and NIORD the estimated parameters based on
the Gaussian and Student distributions are quite sumilar,
while there is significant difference between estimated
parameters based on mentioned distributions for SORC.
Table 2 reports the same result for GIR (1, 1) Model.
Based onmt~[(1, 2, d) and levels ¢ = 0.05 and ¢ = 0.01 for
both GARCH (1, 1) and GIR (1, 1). Table 3-6 in line with
the evidence presented below, show significate difference
between SORC estimated parameters based on Gaussian
and Student distribution ford = 1.72.
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Table 1: Parameter Estimation for GARCH (1, 1) based on Gaussian and Student (v) distributions. The estimated standard deviation are displayed in brackets

Tndex

Wo

Oy

Eo

NIORD
Gaussian-QMLE
Student-QMLE
SORC
Gaussian-QMLE
Student-QMLE
K-SHARQ
Gaussian-QMLE
Student-QMLE

3.7759€° (5.0046e %)
3.7803¢” (8.6713€”)

4.446263 (2.5428¢)
6.3007¢” (3.0962¢7)

4.1868¢7 (3.3712¢”%)
4.1665¢3 (3.74097)

0.12198 (0.11104)
0.12373 (0.12216)

0.27393 (0.10434)
0.47407 (0.19059)

0.11386 (0.05592)
0.11505 (0.06514)

0.840131 (0.3246)
0.83922 (0.15074)

0.69038 (0.091014)
0.52509 (0.1144)

0.87508 (0.08858)
0.8314 (0.0889)

Table 2: Parameter Estimation for GIR(1,1) based on Gaussian and Student (v) distributions. The estimated standard deviation are displayed in brackets

Index oty By Levrage,

NIORD

Gaussian-QMLE 3.2597¢7 (4.6374e) 0.085761 (0.12531) 0.85552 (0.12309) 0.053279 (0.13574)
Student-QMLE 3.27953¢” (5.9808¢™) 0.08779 (0.15906) 0.85414 (0.15801) 0.053026 (0.1478)
SORC

Gaussian-QMLE 5.2658e7 (2.9152¢7) 0.31918 (0.13467) 0.67628 (0.09908) -0.08999 (0.1787)
Student-QMLE 6.4838e” (3.134¢e7) 0.51116(0.21912) 0.52002 (0.11996) -0.06236 (0.3102)
K-SHARQ

Gaussian-QMLE 3.2526e° (2.433e7) 0.12322 (0.06587) 0.88425 (0.0637) -0.1081 (0.07894)
Student-OMLE 3.2554e” (2.44%7) 0.12499 (0.07483) 0.8837 (0.06405) -0.1081 (0.08385)

Table 3: VaR Estimation for GARCH(1,1) based on Gaussian and Student (v) distributions when n,~I" (1, 2, d), d = 1.7, 2 and level o = 0.05

Index d Wops Upns Bogs
NIORD
Gaussian-QMLE 1.7 1.0445¢* 0.3374 0.8403
2 1.0813¢* 0.3949 0.8403
Student-QMLE 1.7 1.0361e* 0.3383 0.8393
2 1.0538¢* 0.3441 0.8392
SORC
Gaussian-QMLE 1.7 1.3073¢* 0.8058 0.6902
2 1.2971e* 0.7997 0.6904
Student-QMLE 1.7 1.7863¢* 1.3446 0.5251
2 1.8433¢* 1.3875 0.5251
K-SHARQ
Gaussian-QMLE 1.7 1.0943¢* 0.2975 0.8319
2 1.1100¢* 0.3015 0.8317
Student 1.7 1.1172e* 0.3097 0.8315
2 1.1926e* 0.3305 0.8314
Table 4: VaR Estimation for GJR(1,1) based on Gaussian and Student {v) distributions when 1n,~I" (1, 2, d). d = 1.7, 2 and level = 0.05
Index d Wons o ns Bogs Levrageyos
NIORD
Gaussian-QMLE 1.7 9.5763¢” 0.252 0.8555 0.1565
2 9.1544e” 0.2408 0.8555 0.1495
Student 1.7 9.6194e” 0.2575 0.8541 0.1555
2 9.5494¢” 0.2513 0.8555 0.1561
SORC
Gaussian-QMLE 1.7 1.3860e 0.8402 0.6763 -0.2366
2 1.4907e* 0.9035 0.6762 -0.2545
Student 1.7 2.0623¢* 1.6259 0.5201 -0.1982
2 2.0457e* 1.6127 0.5200 -0.1966
K-SHARQ
Gaussian-QMLE 1.7 9.5188¢” 0.3605 0.8841 -0.3159
2 7.587%¢° 0.2874 0.8842 -0.2520
Student 1.7 7.8588e” 0.3018 0.8834 -0.2630
2 6.756%¢7 0.2560 0.8842 -0.2244
Table 5: VaR Estimation for GARCH(1,1) based on Gaussian and Student (v) distributions when mt~[(1, 2, d), d =1.72 and level ¢ = 0.01
Inde d Wop Sy Bom
NIORD
Gaussian-QMLE 1.7 2141 6e* 0.6918 0.8103
2 2.4038e* 0.7766 0.8403
Student 1.7 2.0655¢* 0.6744 0.8393
2 2.5038e* 0.8176 0.8392
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Table 5: Continue

Inde d Wop Sy Bony

SORC

Gaussian-QMLE 1.7 2.6394e* 1.6269 0.6902
2 2.9443e 1.8152 0.6904

Student 1.7 3.6213e* 27258 0.5251
2 4.566e* 34375 0.5251

K-SHARQ

Gaussian-QMLE 1.7 2.2299¢4 0.6063 0.8319
2 2.6268e* 0.7134 0.8317

Student 1.7 2.3104e* 0.6405 0.8315
2 2.5773e* 0.7141 0.8314

Table 6: VaR Estimation for GJR(1,1) based on Gaussian and Student (v) d

istributions when nt~[(1, 2. d), d =1.72 and level « = 0.01 and investigated how

Index d Woni Sy Boot Lveragey o
NIORD
Gaussian-QMLE 1.7 2.0215¢* 0.5319 0.8555 0.3305
2 1.6830¢* 0.4430 0.8555 0.2750
Student 1.7 1.6683¢* 0.4466 0.8541 0.2697
2 1.9065¢* 0.5016 0.8555 0.3117
SORC
Gaussian-QMLE 1.7 2.6474e* 1.6049 0.6763 -0.4520
2 2.9225¢* 1.7712 0.6762 -0.4990
Student 1.7 4.2933¢* 3.2849 0.5201 -0.4126
2 4.2247¢* 3.3305 0.5200 -0.4059
K SHARQ
Gaussian-QMLE 1.7 1.5590¢* 0.5905 0.8841 -0.5175
2 1.6220¢* 0.6147 0.8842 -0.539
Student 1.7 1.4975¢* 0.5751 0.8834 -0.5011
2 1.7167¢* 0.6503 0.8842 -0.5702
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Fig. 1: Log-return of indices: SORC, NIORD and K-SHARQ

CONCLUSION

Value at Risk (VaR) is the standard measure that
financial analysts use to quantify risk. It is defined as the
maximum potential loss in value of a portfolio of financial
instruments with a given probability over a certain

horizon. There are two contributions in this study. We
discussed the concept of CVaR two-step evaluation
method by investigating the use of gQMLE’s based on a
generic mstrumental density h and investigated how VaR
distributions could be used in market risk management
and how to account for VaR uncertainty in choosing
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traditional VaR point estimates used to calculate capital
requirements for financial institutions. Second, the
empirical part of this study 1s based on 3 different
financial assets with daily data from the period between
early March 2013 and end of May 2014. Our parametric
VaR modeling is based on a GARCH framework for
modeling volatility. In a first step we analyze the effect of
the return volatility on the uncertainty of VaR estimates.
Owr empirical results reveal that the uncertainty in VaR
estimates highly depends on the volatility level in the
market. Then the natural two-step conditional VaR at the
level ¢ has been obtained which leads to a consistent
estimation of the VaR.
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