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Abstract: Major problem that often arises in the analysis of lifetime data 1s how to select the distribution that
fits our data better among numerous models that apparently fit the data. The study investigates the procedure
of ratio of the maximized likelihoods to discriminate between Weibull, Log-logistic and inverse Gaussian
distributions and applies it to fit data on time-to-first-birth after marriage in Nigeria. We discriminate between
two distributions at a time starting with Weibull and Log-logistic, then Weibull and inverse Gaussian and finally
Log-logistic and inverse Gaussian. Ratios of maximized likelihoods computed for each of these combinations
of distributions are all negative when the data set was analyzed. The study concludes by identifying inverse
Gaussian distribution as the most suitable distribution to model data on time-to-first-birth in Nigeria having
shown preference over Log-logistic which had inmitially been found to be more suitable than Weibull. The
Kolmogorov-Smirnov (K-S) distance between the empirical cumulative distribution function (ecdf) and
cumnulative distribution function (c¢df) of nverse Gaussian is 0.0873, the shortest of all the distributions

investigated, points to inverse Gaussian as the most preferred distribution for the data.
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INTRODUCTION

Asymmetric and censoring natures of lifetime data
render the use of normality assumptions for its analysis
mapproprate. Among the distributions that are frequently
used in modeling such positively skewed data are
Weibull, Log-logistic and mverse Gaussian distributions.
These three distributions are similar in various ways.
For example, the hazard rate function of inverse Gaussian
distribution has n-shape like those of Weibull and
Log-logistic distributions for certain range of parameter
values. That is the hazard rate functions of the three
distributions can assume an mverted bath-tub shape
(Lemeshko et al., 2010; Johnson et of., 1995) for more
details.

Sometimes some distributions with similar properties
like those in the foregoing may produce somewhat similar
data fit for moderate sample sizes. This poses a problem
of choice to researchers since, it 1s important to select the
most appropriate model in order to achieve more precised
inferences.

Testing whether some given observations follow a
particular distribution 1s a classical problem and this was
studied by Cox (1961, 1962) who developed a testing
procedure for two families of distributions. Since then,
several studies have been done in discriminating

between distributions te fit data for meore information,
Atkinson (1969, 1970), Bromideh and Valizadeh (2014),
Dumonceaux ef al. (1973), Kundu ef ai. (2005), Kundu and
Manglick (2004) and Temeshko et al. (2010).

In this study, the problem of diseniminating
between two distributions as in each of the following
combmations: Weibull and Log-logistic, Weibull and
inverse Gaussian and Log-logistic and inverse Gaussian
is considered with the sole aim of identifying which of the
three distributions fits the data on survival time to first
birth. We use likelihood ratio test to achieve this purpose.

MATERIALS AND METHODS

Now, we describe the discrimination procedure based
on arandom sample X = {x,, x5, ..., X,}. Here, we assume
that the data have been generated from any of the three
distributions, namely, Weibull, Log-logistic or inverse
Gaussian. Characteristics of each of the distributions are
as described:

Weibull: If X is any continuous non-negative random
variable representing survival time, then X 1s Weibull with
the parameters i and P denoted by X~W(a, B) if X*~E(p).
The distribution 1s characterized by two parameters scale,
¢ and shape, p. Weibull is a generalization of exponential
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but does not assume a constant hazard rate and therefore
has a broader application. The model is flexible and has
also been found to provide a good description of many
forms of survival time data. It 1s popular in modeling
time to event relating to cancer diseases, surgery and
so on. The hazard function is monotone increasing when
¢>1 decreasing when ¢<1 and constant when « = 1
(Kundu and Manghck, 2004; Lawless, 2003). The
probability density function of the Weibull distribution is:
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fon (3 6 = % x*! exp(

where, 0 = (o, fje R XR, c®* is the parameter space of
Weibull distribution. The comresponding likelihood
function of the observe sample x, x,, ..., x, from Weibull 1s:
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The natural logarithm of Eq. 2 popular referred to as
log-likelihood function is:
A (3)
p

By solving &1,(6,)/0p = 0 from Eq. 3, we have:
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Similarly, solving 31,(6,)/3x = O we obtain:
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are the maximum likelihood estimates, 1.e., of ¢ and 3.
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Log-logistic: T.og-logistic is the distribution of a random
variable whose logarithm has logistic distribution. It 1s a
commonly used lifetime distribution m lifetime data
analysis like Weibull Model. Tt has a fairly flexible
functional form. Tts hazard rate function may be
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decreasing, increasing or hump-shaped The Log-logistic
distribution 1s a 2-parameter distribution with parameters
p and o, scale and shape parameters, respectively
(Bennett, 1983; Kalbfleisch and Prenmtice, 2002). The
probability distribution function (pdf) of this distribution
1s given as:

[,3G0,)=

2
0‘){1 + exp FHL_MD
o

B, = (U, 0)e RIXR, c R’

where, 8, =(uw c)e R X9, 9 is the parameter space of
the Tog-logistic distribution and the corresponding
likelihood function of the sample x, x;, ..., x, 18 (Dey and
Kundu, 2009a):
eprnXi -p}
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The natural logarithm of Eq. 5 1s the log-likelihood

function given as:
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a1,(6.)/op = 0:91,(6,)/do = 0 solved by maximizing Eq. 6.
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Inverse gaussian: The inverse Gaussian distribution is a
continuous probability distribution also known as Wald
distribution. Tts many similarities to standard Gaussian
makes it popular among scientists in modeling diverse
phenomena. And also, its hazard rate function 1s unimodal
in shape which makes it a competitor of models like
Log-normal, Log-logistic, generalized Weibull for a lifetime
model (Lemeshko et al., 2010). The distribution is also
characterized by two parameters, mean and shape. The
tails of the distribution decrease more slowly then the
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normal distribution. Tt is therefore, suitable to model
phenomena where numerically large values are more
probable than 1s the case for the nommal distribution
(Folks and Chhikara, 1978).

If x,, %, ..., X, are independent and identical random
variables, x;, follows the inverse Gaussian distribution if
the probability density function (pdf) 15 defined as:

7\‘ 112 7\.(X-}.L)2
[(X;,0,) = [ Y J GXP{'W , %20 )

0,=(u, Ae RLNR, R’

where, 6, = A)eR XK R is the parameter space of
the distribution. p and A are the mean and the shape
parameter, respectively and are of the same physical
dimensions as X (Tweedie, 1957a, b). There are other
forms of Eq. 7 obtainable through re-parameterization
(Folks and Chinkara, 1978). The corresponding likelihood
function of the sample x,, x,, ..., x, from the distribution 1s:

Ly (83) - ﬁ[%juﬁexp{'m} &)
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The natural logarithm 8 lknown as

log-likelihood function is:

of Eq.
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Maximum likelihood estimates (mle) of p and A are
obtained from Eq. 9 as following:

Likelihood ratio: Suppose two models 1 and 2 appear to
fit samples of n-independent and identical data x, x,, ..., X,.
In this process, we calculate the maxmmum likelihood
estimates of the parameters based on the assumptions
of the two distributions. If (y,, ¥,) and (t,, T,) are the
parameters of model 1 and 2, respectively then their ratio
of maximized likelihoods as defined by Dey and Kundu
(2009b) and Goh et al. (2014) 1s:

.

L) 10
L,(&.%,)

where, L,(7. 7,) and L,{%, t,) are the maximum values of
the likelihoed functions for the two models 1 and 2,

respectively. ¥.%,.%.% are the MLEs of v,, v, T, T,
respectively. If L (%.%,)°L,(%,%,), then we select
model 1 and 2 if otherwise.

We take the natural logarithm of L in Eq. 10 to form
the basis of our decision rule in order to discriminate
between the two models, In(1.) = T:

T =In(L) _h{@} (11)
LZ(TP TZ)

T 1s either positive or negative depending on the
probability of correct selection of a particular model being
better than the other. For example, the sign is positive if
model 1 is preferably and correctly selected as being
better than model 2. That 1s if Inl. = T=0, data belong to
model 1. If InlL = T<0, then the data beleng to model 2
being the denominator of Eq. 11. The value of T, gives the
direction of the Probability of Correct Selection (PCS)
of a model. For more on the distribution of T and
computation of probability of correct selection of
model (Dumonceaux et al, 1973; Dey and Kundu,
2009a). Equation 11 can be written as difference of
the log-likelihoods of the models 1 and 2, viz:

T= 1(?1 > ?2 )'1(%1= fz) (1 2)

Now to address the objective of tlis study,
we discriminate between the three distributions
paired-wisely, Weibull, Log-logistic and inverse Gaussian.
We have the following combinations: between Weibull
and Log-logistic, between Weibulland inverse Gaussian
and between Log-logistic and mverse Gaussian.

We compute T which gives the direction of the
probability of correctly selecting the best distribution
for a given dataset for each combination of these
distributions as following:

»  Between Weibull and Log-logistic:

T, =In(L,)= 1{]4“’5(81)} (13)
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*  Between Weibull and Log-logistic:

T, =In(L,) —ln{LL(e‘)} (15)
L (6
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between the empirical density function and the fitted
(16)  functions of Weibull and Log-logistic distributions with
na +Eln(2n) +3iln . +i k(xiz'l-'u)z their respective p-values brackets. are 01 720 (0.63) and
2 2 25 = ou'x 0.1094 (0.81). T, = 1399.1 18 negative, an indication that
Log-logistic distribution is preferably better than Weibull

T, = -na-neiln f+ (o-1) iln X, -i(){;‘

i=1 i=1

J“ Also, the Kolmogorov-Smirnov (K-3) distances

1

¢ ForLog-logistic vs. inverse Gaussian: to model the data.
The empirical cumulative density function (ecdf) and
L. (8, cumulative density functions of Weibull and Log-logistic
T, =In(L,) _IH{LLL(BZ)} (17)  are plotted in Fig. 1. The density functions of the two
1G 3

distributions are as shown in Fig. 2.
Table 2 below presents the results of MLEs of
- { {lnx —MD inverse Gaussian and Weibull functions as &=1.39,
Zlog I+exp| —— | - 5 o L .
B=3163, h=4546, 1="28.74, respectively.
. - 2 The values of the K-5 distance between ecdf and cdf
D +£ln(2ﬂ) + E2]11 X +2(X‘7;M) of Weibull and inverse Gaussian distributions with their
2 2 2 =R p-value in brackets are respectively, 0.1720 (063) and
(18) 0.0873 (0.93). T, = -2059.3 wluch 1s negative an indication
RESULTS that inverse Gaussian distribution is preferably better than

X lilx -nln 6—{—“’—2

9] i=1

T,

For illustrative purpose, in this study, we analyze the
data on survival time to first birth to a woman after
marriage in Nigeria. The data was extracted from the
reports of National Demographic and Health Survey
(NDHS). The data set comprises of 15,363 respondents.
We apply the ratio of maximized likelihood functions to

Cumulative probability
o
(6]

discriminate between Weibull, Log-logistic and inverse 04

Gaussian distributions. We fit the three distribution 03l

functions and pair their results up for discrimination 02l ecdf

purposes. The MLEs of the parameters of  the o1 ng&%iac caf
distribution functions and their corresponding log- ' i

likelihoods ratics are given in Table 1-3 as they are S 40 60 80 100 120
combined. In Table 1 as shown below where Weibull Data

and Log-logistic are discriminated, the MLEs of their
parameters are respectively, =139 f=3163, =042 and  Fig. 1: The cdf of Weibull, Log-logistic and ecdf of the
=305 data

Table 1: MLE of parameters of Weibull and L og-logistic distributions with their respective Kolmogorov-Smimov (K-8) goodness-of-fit statistics

Distributions Parameter estimates Standard error K-8 distance p-values Log-likelihood T = In(L)
Weibull G=1.39 0.2004 0.1720 0.63 -60,367.9 -1399.1
B=31.63 0.0084
Log-logistic &5=042 0.0029 0.1094 0.81 -58,968.8
[=3.05 0.0060

Table 2: MLEs of parameters of Weibull and inverse Gaussian distributions with their respective Kolmogorov-Smirnov (K-8) goodness-of-fit statistics

Distributions Parameter estimates Standard error K-8 distance p-values Log-likelihood T, = In(Ly)
Weibull G=1.39 0.2004 0.1720 0.63 -60367.9 20593
_ B=31.63 0.0084
Inverse Gaussian h=45.46 0.5319 0.0873 0.93 -58308.6
=2874 0.1942

Table 3: MLE of parameters of Log-logistic and inverse Gaussian distributions with their respective Kolmogorov-8mimov (K-8) goodness-of-fit statistics

Distributions Parameter estimates  Standard error K-8 distance p-values Log-likelihood T; = In(Ls)
Log-logistic g=0.42 0.0029 0.1094 0.89 -58968.8 -660.2
p=3.05 0.0060
Inverse Gaussian A=4546 0.5319 0.0873 0.93 -58308.6
pn=2874 0.1942
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Fig. 4 The pdf of Weibull, inverse Gaussian and
histogram of the data

Weibull to model the data. Figure 3 1s the plot of ecdf and
the cdf of Weibull and inverse Gaussian functions.
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Gaussian  distribution i  preferably  better than
Log-logistic to model the data (Fig. 5). Figure 6 1s the plot
of density functions of Log-logistic and inverse Gaussian
distributions.

DISCUSSION

The study mvestigates the procedure of ratio of the
maximized likelihoods to discriminate between Weibull,
Log-logistic and mverse Gaussian distribution functions.
We discriminate between two distributions at a time
starting with Weibull and Log-logistic, then Weibull and
inverse Gaussian and finally with Log-logistic and inverse
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Gaussian. The shapes of density functions plotted in
Fig. 2, 4, 6 give credence to the fact that the two
distributions in each combination describe the data in
similar maenners accordingly and hence discrimmation
between them can be carried out.

We compute the decision statistic in terms of what 1s
designated as ‘Probability of Correct Selection’ (PCS) of
a distribution as T by taking the natural logarithm of the
ratio of likelihood functions of the two distributions under
investigationand is interpreted by its sign. Tt is however
umportant to note here that the computation of true value
of PCS is beyond the scope of this study.

From the results m Table 1 for fitted Weibull and
Log-logistic distributions in terms of T, 1s negative and
the K-8 distances between ecdf and cdf with Log-logistic
having the shortest distance, all pomt to the fact that
Log-logistic is more suitable to model the data than
Weibull. This 13 also corroborated by the plot of ecdf and
cdf of Log-logistic function which i1s more consistently
lying on the ecdf than that of Weibull as shown in Fig. 1.
The choice of Log-logistic as against Weibull 15 also
evident in the larger value of log-likelihood function in
Table 1.

In the similar manner in Table 2 where Weibull and
inverse Gaussian are considered, mverse Gaussian is
identified to be better fit for the data since, the sign of T,
negative. The K-5 distance between ecdf and the cdf
of mverse Gaussian is shorter than that of Weibull. In
Table 3, inverse Gaussian is a preferred choice as against
Log-logistic distribution as also evident in the sign of T,
which 1s negative, the shorter K-S distance between the
ecdf and the cdf of fitted inverse Gaussian distribution
than other two distributions and their values of the
log-likelihoods. The ecdf and cdf of the inverse Gaussian
plotted as shown mn Fig. 3 and 5 also give credence to it as
the most preferred distribution for the data as its cdf
consistently lies on the ecdf than do the cdfs of other two
distribution.

CONCLUSION

The study concludes by identifying inverse
Gaussian distribution as the most suitable distribution to
model data on waiting time to first birth in Nigeria having
shown preference over Log-logistic which has imtially
been found to be better than Weibull. The K-8 distance
between ecdf and cdf of inverse Gaussian recorded the
lowest.

We recommend that the distribution of T, ratio of the
maximized likelihoods be mvestigated further since, the
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findings in this study rely on the asymptotic property of
MLEs and the sign of T. Knowing the distribution of the
ratio of the maximized likelihoods is important in the
computation of the actual value of probability of
correction selectionof the most suitable distribution for a
data set and also for the calculation of sample sizes
relevant mn discriminating between two models.
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