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Stochastic Modeling of the Process of Solid Bodies Fracture
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Abstract: The defects of solid body materials occur mn a random manner and are unevenly distributed within
their volume that’s why it should be supposed that fracture of solid bodies has a probabilistic nature. This is
evidenced by the example of the brittle fracture theory according to which fracture occurs under the influence
of microcracks propagation inside a material. There was offered a mathematical model of solid bodies fracture
based on probabilistic approach. There were analyzed the conditions of cracks development with account of
random character of their dimensions and distribution within the volume of a material. A condition of
occurrence of a critical state of a solid body resulting in its fracture was determined. Tt was established that the
nature of solid bodies fracture depends on expenditure of energy applied at time of fracture. Moreover, this
relation has a random nature since internal energy of saturation of solid body material is a random variable.
Creation of the said Probabilistic Mathematical Model of solid bodies fracture will allow to forecast strength
characteristics of various products more accurately as well as to inprove their reliability without necessity to

ensure unreasonable assurance coefficient.
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INTRODUCTION

There exists a lot of works dedicated to the
mechanism of materials fracture (Berezin and Poroshi,
2012; Mamayeva et al., 2008; Ostsemin and Utkin, 2009;
Vladimirov, 1984). But the most of them consider the
fracture process as a determirnistic one. Actually exterior
load on a material 1s concentrated in its defects and since
the defects within the material volume are distributed
unevenly the stresses occurring in the material defects are
randomly distributed. Destruction begins from the major
defects which in the process of destruction join into
one large crack. That’s why fracture of materials is a
stochastic process and the process of fracture may be
forecasted with a certamn probability. Otherwise, it would
be necessary to use unreasonably high assurance factors
at time of strength calculation which results in significant
financial and economic losses. A range of researchers
(Berezin and Poroshi, 2012; Mamayeva et al., 2008)
offered a probabilistic approach to analysis of the process
of fracture but the dependences offered by them had
empirical nature and did not take into account the
mechamsm of fracture.

Since, the defects of solid body materials occur in a
random manner and are unevenly distributed within their

volume it should be supposed that failure of solid bodies
has a probabilistic nature. Let’s demonstrate this by an
example of the Gmffith’s theory of brnttle fracture
which states that failure occurs under the mfluence of
microcracks propagation within a material. Let’s carefully
follow the Griffith’s calculations but on the condition that
there 1s a number of randomly located microcracks with
random dimensions within the material instead of one. The
micriocracks have flat round form with the radius 1.

DESCRIPTION OF STOCHASTIC MODEL OF
SOLID BODIES FRACTURE

According to the Griffith’s statements let’s analyze a
rectangular plate under the action of tension force. Elastic
strain energy of the plate 1s determined as:

W=k, c*V/(2E) (1)

Where:

o = Tensile stress mside the plate

E = Elastic modulus of the plate material

V = Volume of the plate material

kp = Coefficient which makes allowance for a type of
deformation
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For plane stress condition kp = 1 for plane
deformation condition ku = 1-p where p is the Poisson’s
ratio. In case of presence of cuts there can be observed
local stress relief in the adjacent zones which results in
decrease of the elastic strain energy accumulated in the
plate by the value equivalent to:

W, = (nk ko' Y IP)VE (2)
where, kg 1s a coefficient which makes allowance for an
angular position of microcracks with regard to the
direction of action of the exterior load (given that equally
possible angular position of microcracks k; = 2/m). As it
follows from Eq. 1 and 2 the released elastic energy is
equal to:

W-W, =k c’abt/(2E)-n(rk ko> » ’VE 3

According to Griffith released elastic energy flows to
the top of a cut where stress concentration occurred and
there it 1s used for destruction, 1.e., creation of a new
surface of a body. The effort for creation of new surfaces
is equal to:

U =2nkgy, > 1 4

where, v, is an energy of a free surface of a material.
Providing that the tip edges of the plate are motionless
(no effort on the part of external forces) and that the cuts
length mcreased by the small value of Al then considering

(Eq. 2) the value of released deformation energy will be
equal to:

AW = [ W+ AD-W D] = ik ko (Y (1+ ALY -
NIVE =3k k0" > ALE

&)

With respect to Eq. 4, the value of energy consumed
for increase of the cut area will be equal to:

AU =2k ry, (Y 1+ AY-3 1) = dnk gy, a1 (6)

Here, two situations are possible according to
Griffith:

AW=ATD the quantity of released energy will be
more than enough for material fracture at the cut
top and the cut will begin to spontaneously lengthen
up to division of the plate mnto two parts. In this case
kinetic energy will be generated more and more
intensively and the cut length will grow more and
more quickly
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AW<ATL quantity of released energy will not be
enough for the cut increase and the cut will remain

fixed

Therefore, the following formula will be a condition
for occurrence of the critical state when a cut will
spontaneously lengthen: -AW = AU.

Let’s determine the value of critical stress o
which may give rise to the beginning of microcracks
development by equaling Eq. 5 and &:

G:(4YSEEI'A1)112/(3'1(H212 .Al)”z (7)

If the value of crack increase is proportional to its
length then:

o=@y EY )3k, Y )" (8)

As we can see Eq. 8 18 similar to the equation
obtamed by Griffith for one crack. However, as contrasted
with the dependency offered by Griffith this equation
contains the amounts which depend on the number and
distribution of microcracks in the volume of a material.
And since the value | 1s a random one then the value of
stress which initiates destruction of a materials will be
also random.

If the law of distribution of the values 1 is known then
it is possible to determine the nature and parameters of
distribution of the values 0 on the basis of Eq. 8 For
example often technological break of materials is
performed by use of creation of a stress concentrator
serving as a microcrack. It’s not difficult to establish that
in this case given that the value 1 is distributed according
to the normal probability law with the mathematical
expectation 1, and the variability ¢ the density of
probability ofo value distribution will have the following
form:

s (e fo-1)

£(0) = (h- 620" Y )

where, u, = 1,/(2'? 5)) and 0, is a mathematical expectation
for the value 0 equal to:

o, =n(vE) /K, 1y (10)

Mean square deviation of the value 0 15 equal to
8, = ¢Op. Dimensionless factors 4, p, 1) and ¢ depend of the
value u, and are determined on the basis of Table 1.

As it can be seen from Table 1 the growth of the
value of the dimensionless parameter u, of distribution of
random values of the microcrack 1 is accompanied by
significant increase of the value of factor ¢ which



Res. J. Applied Sci., 10 (11): 755-757, 2015

Table 1: Koroliov A. V. Stochastic modeling of the process of solid bodies

failure

u, A 1 n ¢

2.0 1.98 0.88 1.06 0.10
2.4 2.49 0.92 1.04 0.11
2.8 2.99 0.94 1.03 0.13
3.2 3.46 0.96 1.02 0.16
36 3.93 0.97 1.02 0.21
4.0 4.40 0.98 1.01 0.30

characterizes the mean square deviation s, The value
of factor 1 and therefore, the value of mathematical
expectation g, almost does not depend on the value of u,.

By analogy it is also possible to find the parameters
of distribution of the value ¢ for other laws of distribution
of the value 1.

The Griftith’s theory and all of the solutions obtained
on its basis are true for brittle solids. This theory may be
also applied for elastic and plastic bodies given that
adjustments offered by Vladunirov (1984) r;>>1, are used.

CONCLUSION

Therefore, the nature of fracture of solid bodies
depends on the expenditure of energy applied at time of
destruction. Moreover, this relation has a random nature
since intemnal energy of saturation of solid body material
is a random variable.

757

Creation of the probabilistic mathematical model
of solid bodies fracture will allow to forecast
strength characteristics products  more
accurately as well as to improve ther reliability
without necessity to ensure unreasonable assurance

of various

coefficient.
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