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Abstract: Differential Evolution (DE) has emerged as one of the fast and efficient search heuristics of current
interest. Combining DE and Fuzzy C-Means (DEFCM) explicitly improves the clustering on the basis of degree
of membership. However, misdirection of the search, e.g., too much either exploitation or exploration search still
ruin the achievement of global optimal solution. Thereby, this study proposes a DE-based fuzzy clustering
using self-adaptive trade-off between exploitation and exploration (DEFSA). The efficiently dynamic trade-off
15 controlled by none of arbitrarily defined parameters. The performance measurements relate to F-measures,
FCM objective degree and Xie-Beni validity index. The experiments are operated on real-world as well as
artificial data sets. The results show the superior performance of the proposed method m terms of clustering
correctness over traditional fuzzy ant-based clustering as well as some other efficient clustering methods.
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INTRODUCTION

Clustering is one of the most important unsupervised
learning techmques (Rojas, 1996; Herrero et af., 2011). It
organizes a set of sample cases into similar groups called
clusters. The objects within one cluster are highly similar
and dissimilar with others in different clusters. Clustering
15 widely applied m several application fields such as
pattemn recogmtion (Webb, 2002), data mining (Tan et af.,
2004), machine learning (Alpaydm, 2004), etc. For solving
clustering problems, efficient approaches such as
Self-Organizing feature Maps (SOM) (Kohonen, 1995),
Average Linkages (AL) (Hastie ef af., 2009) have been
successfully applied. Fuzzy C-Means (FCM) (Dunn, 1973;
Bezdek, 1981), a partitional type of soft clustering employs
basic 1dea relating to find cluster centers, then refining
them such an algorithm allows each sample cases
belonging to two or more clusters with different degrees
of membership. Thus, FCM is well applied to real-world
applications. Nevertheless, FCM 1s
mitialization and can be easily trapped mto local optimal
solutions. In order to relieve such difficulty, most of the
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researches are proposed, aiming to the integration
between FCM and powerful evolutionary optimization
algorithms, e.g., Particle Swarm Optimization (PSO)
(Tin et al., 2012; Tzakian and Abraham, 2011) as well as
Ant Colony Optimization (ACO) (Dogan and Korurek,
2012). Dafferential Evolution (DE) a Heuristic algorithm

was put forward by Storn and Price (1997). DE exhibits
remarkable performance in optimizing a wide variety of
optimization problems in terms of final accuracy,
convergence speed and robustness. The runtime
complexity and the function evaluation number for
acquiring global minimizer by DE algorithm is generally
smaller than the compared algorithms including PSO
{(Civicioglu and Besdok, 2013). In addition, it 13 found by
Montgomery et al. (2011) that DE can deliver results of
comparable quality significantly faster than ACO for RFID
antemna design. One of the reasons is that ACO evolution
is based on the pheromone levels left by the ants and
hence does not contain such a direct link to knowledge
contained in previous iterations as DE. By such
competent characteristics, several number of DE variants
are utilized to solve several optimization problems and
generates superior outcomes than other conventional
evolutionary approaches. A new DE mutation strategy,
Sayah et al. (2013) shows the improvement of the
performance and the alleviation of premature convergence
i economic dispatch problem. Another mutation
strategies, proposed by Wang and Zhao (2013)
dynamically control parameters in self-adaptive manner.
The research (Wang ef al, 2013) adopts different DE
mutation operators of for each sub-population the better
results over the past DE variants successfully are shown.
DE relieves the problem regarding a sensitivity of FCM to
the mmtial state the aim 1s to solve machine cell formation
problems in a fuzzy environment (Kao and Chen, 2013).
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Moreover, achievement of DE-based fuzzy clustering
on some benchmark data sets is shown by Ravi et al.
(2010). Likewse, the fuzzy differential evolution
(Vucetic and Simonovic, 2013) 1s successfully employed
to solve a reservoir operation problem fast convergence
is achieved as well. A chaotic differential evolution
algorithm 1s proposed by L1 et al. (2013) competition
co-evolution among each sub-population 1s pursued to
improve the performance of the conventional DE.

However, any optimization algorithm including DE
which exploits the search space around the optimally best
solution may not get globally best solution. Vice versa,
the one which explores the search space possibly gets
better solution by enhancing the diversity of solutions
but needs more time to converge. The method, proposed
by Slowik (2011) applies fuzzy control on trade-off
between exploration and exploitation of evolutionary
algorithm search a number of generations of evolutionary
algorithm and population diversity are considered n such
control. Han et al. (2013) proposes a modified DE
mutation operation considers local information nearby
each individual population to trade-off between the
exploration ability and the exploitation ability. These two
latter works, represent examples of the attempt to achieve
globally best solution by striking the trade-off between
exploration and exploitation. Those types of research
usually proceed such trade-off by using particular control
parameters. This may lead to a biased and overly
optimistic ¢lustering process thus limit the usefulness of
the model. There exist some classification and regression
works using non-controlling parameters techmque
(Aydin, 2007, Pai et al, 2012; Memmedh and
Nizamitdinov, 2012). They considerably improves the
performance accuracy as well as reliability.

This study, thereby proposes a DE-based Fuzzy
Clustering Using Self-adaptive Trade-off Between
Exploitation and Exploration (DEFSA). According to this
research, self-adaptive trade-off between exploitation and
exploration 1s remarkable such that none of arbitrarnily
setting parameters 1s used to control the mechamsms of
such exploitation and exploration. The experiments are
taken on six benchmarks real-world and two artificial data
sets. The comparison tests are performed on the proposed
method, DEFSA agamnst a traditional DE-based fuzzy
clustering, DE-based clustering as well as some other
types of effective clustering algorithms such as SOM and
AL,

MATERIALS AND METHODS

Combining Differential Evolution and Fuzzy C-Means
(DEFCM): DE is a Relatively Heuristic algorithm which 1s
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designed to optimize problems over continuous domains.
In DE, each decision variable is represented in the vector
by areal number. As in any other Evolutionary algorithm,
the initial population of DE is randomly generated and
then evaluated. After that the mutation process takes
place. During the mutation stage, three parents are chosen
and they generate a single offspring which competes with
a parent to determine who passes to the following
generation. DE generates a single offspring by adding the
weighted difference vector between two parents to a third
parent. During crossover, each offspring and parent
vectors participate for creation of trail vectors depending
on Crossover Rate (CR). The CR has been provided by
the user m the range [0, 1]. If the trail vector yields a lower
objective function value than a predetermined population
member, the newly generated vector replaces the vector
with respect to which it was compared.

Vector representation and population initialization: A
population in DE process consists of several individual
partitions P; of K cluster centers, i =1, .., M, M is a
population size and F, = [¢;...c;] where ¢; refers to cluster
center j in partition P, j=1, ... K. c1j = [{..{%...£%]" where
f, refers to feature d of cluster j in partition P, and D is the
number of features. Thus, one would determine as:

131 = EHDXK

P=f],,

ij
Fitness computation and finding the optimal partition:
The fitness of an individual 1s computed based on fuzzy
c-means objective function (Eq. 1):

Where:

iy
FCM _ objectivefunction=>"> us x, - cij| (1
n=1 k=1
M Tepresents membership of sample x, n =1, .., Nin

cluster j. m = relates to a degree of fuzziness. For crisp
data, 1, 1s one if x, 18 in cluster j and 1s zero if not. Then,
the partition with the optimal fitness, P* is chosen.

Mutation: Three particular partitions, P,eR™* are
randomly picked up, named P, P, and P, where 11, 12 and
341, ..., M}. Such three partitions, together with scaling
factor, Fe[0, 1] are used to compute a mutant partition,
P™ as seenin Eq. 2:

™ =P, +F(F, -P,) 2)
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Crossover: In order to increase the diversity of the
perturbed parameter vectors, crossover is introduced.
P, = [fcross®],. refers to the partition processed by
crossover:

P = [fmu‘[f]1 }

DxK

And:
P = [foptic]l]DxK

where, { cross,’, F_mut’, respectively represent feature
d of cluster j in partition 1, processed by crossover,
mutation and {_opt” is feature d of cluster j in the optimal

partition found m Eq. 3:
f crossij.1 =
fop‘[;1 ifrand, (0, 1) > CR ord # rand(j)
3

In Eq. 3, rand, (0, 1) is the dth evaluation of a uniform
random number generator with outcome €[0, 1]. CR is the
crossover constant £[0, 1] which has to be determined by
the user. rand(j) is a randomly chosen index €1, 2, ..., D
which ensures that fcross;’ gets at least one parameter
from fmut,"

fimut} ifrand, (0, 1)< CRord = rand(j)

Selection: To decide which mdividual partitton should
become a member of the next generation P,™* is compared
to the optimal partition P using greedy criterion. 1f P,=>*
yields better fitness value than P* then P is set to P, in
the next generation, otherwise, the old value of is P,
retained.

Termination criterion: The processes of mutation,
crossover and selection are executed for a fixed number of
iterations. The best partition, P seen up to the last
generation of the population provides the solution to the
clustering problem.

FCM clustering refinement: After DE clustering process,
FCM is performed for refimng the clusters using P
yielded in termination criterion as the initial partition.

A differential evolution-based fuzzy clustering using
self-adaptive trade-off between exploitation and
exploration (DEFSA): Drawbacks of most Optimization
and Clustering algorithms including DEFCM concerns the
low performance of driving exploitation or exploration
operations during the search, this easily leads to local
optimal traps or divergence of the search. DEFSA is
mtroduced here to relieve such problems as a
consequence, the global optimal solution can be
accomplished. In the proposed method, -efficiently
dynamic exploitation and exploration mechanism is
controlled by none of arbitrarily defined parameters. The
main idea behind such proposed method is to exploit the
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search around a region in the gap between the nearby
cluster centers in two current best partitions of cluster.
Such a region tends to contain the better partition
solutions in the coming iteration, nevertheless, the
regions outside the gap are also explored for possible
better solutions as well. An overview process of DEFSA
1s described m Fig. 1. Based on a randomly selected mitial
partition of clusters, DEFCM 1s executed. A couple of
optimal partitions P, and P * which represent the best
and secondary one 1s picked up mstead of a single one.
The feature values of both partitons are linearly
normalized. Then, inside and outside gaps between the
nearby cluster centers in those P,™ and P,™ are indicated.
As aforementioned, the inside-gap to the
exploitation area where the outside-gap one refers to the
exploration area. The interval of such gaps is illustrated as
an example in Fig. 2 and would be explained in detail later
on. P, and P, and are randomly initialized within each
gap regions and are independently fed as seeds to
DEFCM. Afterwards P, and P,”" are achieved from those
two regions by the DEFCM. Each of those partitions
represents the optimal clusters found mn the area of
exploitation and exploration Once again, inside and
outside gaps between the nearby cluster centers in the
new and are defined. The execution loop is repeated it
would be terminated when the pre-defined number of
iterations is reached or one of the optimal partitions can
pass the setting performance criteria.

Figure 2a shows partitions P, and P,™ each of
which successively composes of two clusters (K = 2)
™ ¢, and ¢, ¢, with three features (D = 3).
Based on Euclidean distance, 2 couples of the nearby
clusters between the two partitions P™ and P,;*" are
defined the first one is ¢, =[0.10.8 0.4]", ¢,,”™=[0.20.2
0.4]" and the second one is ¢,™ = [0.30.50.9]" and
cy™ = [0.7 0.6 0.17". The inside-gap between the features
in first couple of clusters are in the range [0.1, 0.2],
[0.2, 0.8] and [0.4, 0.4], respectively. Likewise, the gap
between the other couple are in [0.3, 0.7], [0.5, 0.6] and
[0.1, 0.9]. These inside-gap regions are used for randomly
creating the clusters in a new partition, P,"™ vice versa,
the outside-gap ones based on the area outside those
ranges are used for developing the clusters in P,"". Such
regions are pointed in Fig. 2b. P,™* composed of randomly
selected cluster ¢, = [fnew,,' fnew,® fnew,,’] and
c"™" = [fnew,,' fmew,,’ fnew ;] where fnew * refers to
feature d in the cluster ¢,™" belonging to P,"", j = 1, 2; the
individual fnew,* are randomly selected based on these
following ranges: fnew,,'c[0.1, 0.2], fnew,*c[0.2, 0.8] and
fnew,” = 0.4 by the same way fnew,'c[0.3, 0.7],
fnew,,*c[0.5, 0.6] and fhew,,’c[0.1, 0.9] It is noticed that
those ranges are generated from the gap between ¢, and

refers
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DEFCM searches for optimal partitions, Pi"and P

| S
A
Find the gap between Pi™ and P> <
l p™ P l
Randomly initialize partition, P Randomly initialize partition, P3™
in the inside-gap region in the inside-grap region
P P;‘“l
DE searches for optimal DE searches for optimal
partition, new P{" partition, new P3"
I new Pi™ new P5" I
Termination P, Py
criteria
End
Fig. 1. An overview process of the proposed method (DEFSA)
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Fig. 2: a) An example of two partitions P,"" and P, composed of two clusters with three features for each and b) the
region mside and outside the gaps between clusters used for exploitation and exploration of the optimal partition
solutions
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c;, as well as ¢,; and ¢,,. Subsequently, such P,"¥ would
be employed as the mitial seed partition for further
DEFCM optimization process. After a certain number of
DEFCM iterations, the optimal partition of clusters, the
new P, is discovered as a result; and it is supposed to
be an optinal solution found in exploitation area.
However, the region outside the gap is unexplored that
leads to the imbalance between exploitation and
exploration. By this reason, the search space outside the
gap between the two old optimal partitions P * and P,
should be also involved. Under the outside-gap regions,
the partiion P, 18 developed. It composes of
randomly selected clusters ¢, = [fnew,' fnew,’
fnew,’], ¢, = [fhew,,' fhew,, fhew,,’] where fews
refers to feature d in the cluster ¢;"" belonging to P,™"
This outside-gap 18 as well illustrated along with the
inside-gap in Fig. 2b. Tn contrast to the exploitation search
which 1s performed under the inside-gap area, each of the
features fnew,’ in cluster ¢, and c,,"" is randomly
selected based on the following regions, fnew, '¢[0.1,
0.2], fnew,,*#[0.2, 0.8] and fnew,,” # 0.4 by the same way
fnew,,'¢[0.3, 0.7], fnew,,’¢[0.5, 0.6] and fnew,,*#[0.1, 0.9].
Then, P, would be submitted as the initial seed partition
to DEFCM optinization process. The new optimal
partition of clusters P, is obtained as a consequence
and 1t represents the best partition from exploration side.
If one of the new P,™ or P, can pass the setting
performance criteria or the defined maximum iteration is
reached, then the iteration is terminated, else those new
P, and P, would be fed mto the execution loop in the
next iteration as indicated in Fig. 1. In cases of the number
of clusters, K>2 the similar process can still be applied.
Additionally, the search procedure points out that in an
execution loop, efficient exploitation and exploration
mecharnisms are dynamically pursued without any control
none of arbitrarily setting parameters 1s needed to drive
the mechanisms of the search.

Although, the searches are executed in both inside
and outside gap based on two optimal partitions, P, and
P, the worst-case complexity (big-O notation) relating to
DEFSA 1s determined as O(N <K <D *M) where N, K, D and
M refer to the mumber of sample cases, clusters, features
and DE population size consecutively.

RESULTS

The tested data sets consist of two artificial data sets:
Artset] and Artset? and six well-known real-world data

sets, available at ftp:/ftp.ics.uctedu/pub/machine-
learning-databases/named parkinson, hepatitis,
dermatology, breast tissue, iris and wine. The

characteristics of the real-world data sets are described in
Table 1.
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Table 1: Characteristics of data sets considered

Data sets Number of features Number of sample cases Clusters
Parkinson 22 195 (48, 147) 2
Hepatitis 18 148(2, 81, 61, 4 4
Dermatology 34 366 (112, 61, 72, 49, 52, 20) 6
Breast tissue 9 106 (21, 15, 18, 16, 14, 22) 6
Tris 4 150 (50, 50, 50) 3
Wine 13 178(59, 71, 48) 3

The artificial data set, Artsetl 1s a two-feature
problem with three unique classes. A total of 900 patterns
are drawn from three independent bivariate normal
distributions where classes are distributed according to:

n 0.080 0076
NZ “ : > Z E]
I 0.076 0074
i=1,2,3,p,= 0163, 1, =0.147,
1, = 0.535, 1, = 0.477,131 = 0.838, 1, = 0.799

Where:

)

x

Mean vector of class 1

A covariance matrix

The data of Artset] 1s illustrated in Fig. 3a. Figure 3b
shows Artset?, a three-feature artificial data set with three
classes and 300 patterns where the sample cases in each
class 1s distributed in such a following manner:

0512 0.798
Class1~Uniform|0.143  0.547
0.448 0.644

0 0275
ClassZ~Uniform |0 0.490
0 0247

0.708 1
Class3~Uniform|0.461 1
0658 1

The proposed method, DEFSA and all comparative
clustering methods: DEFCM, DE alone and two Efficient
Clustering Methods, SOM and AL are evaluated and are
implemented using MATLAB 7.10(R2010a)ona CPU 2.4
GHZ Core2™Quad with 4 GB RAM. DEFSA as well as
DEFCM employ 30 population, running 10 maximum
iterations.

The results are refined by 300 FCM runs. DE also
employs 30 populations on 10 maximum iteration runs.
The 300 maxinum iterations are consumed by FCM, SOM
and AL.
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Fig. 3: The artificial data sets; a) Artset]l and b) Artset2

Such numbers of runs are assigned for far
comparison tests. Ten independent cross-validation runs
are performed to generate average results for all the
methods. The quality of the respective clustering
approaches are evaluated and compared based on the
following criteria measure.

The objective function values of FCM: This is the sum
over all the distance from a sample case to all the centers
as defined m Eq. 1. Clearly, the smaller the sum 1s the
higher the quality of clustering would be.

The F-measure: This 1s related with the precision and the
recall from the information retrieval (Dalli, 2003
Handl et al., 2003). The precision and the recall are
defined as:

o el

“4)

pi.iy=—, 14 j)=
n, .

Where each class 1 (given by the class labels of the
used data set) is regarded as the set of n, items desired for
a query and each cluster j (generated by the algorithm) is
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regarded as the set of n items retrieved for a query. n; is
the number of sample cases of the class i within cluster j.
For a class i and a cluster j, the F-measure is defined as:

(b”+1).p(i.j)r(i.j)

b p(i.j)r(i.j)

(5)

F(, j) =

Where researchers choose b = 1 to obtain equal
weighting for p(3, 1) and 1(1, j). The overall F-Measure for
the data set of size n 1s given by:

nl

-3 {F (i)} (6)

I‘lmax,
The bigger the F-measure 1s, the better the clustering
algorithm is.

Xie-Beni index (XB): The XB (Xie and Beni, 1991, Olson,
1995) is called the compactness and separation validity
function as shown in Eq. 7. The compactness and
separation measure respectively, indicated
numerator and denominator of the equation and are
defined m Eq. 8 and 9. Small values of XB are expected for
compact and well-separated clusters:

are in

o(C.X)

XB(C,X) = 9
(©X) nxsep{C)
K
¢(C.X)= ZDz(ck,xi) (&)
k=lieck
sep(C)= miKnHXi -ckHZ (9
Where:
n = The number of sample cases
X = Sample case i
K = Total number of clusters
D¥c*, %) = A Euclidian distance between ¢ and x;
c* = The center of cluster k

DISCUSSION

The derived boxplots m Fig. 4 signifies the
competent F-measure degrees of the proposed method,
DEFSA for all data sets. However, the proficiently low
standard deviation of the F-measure degree of DEFSA 15
noticeable for both types of data. This i1s one of
remarkable cutcomes of DEFSA. Although, Table 2 shows
a little bit inefficient runtime consumption, produced by
DEFSA, Table 3 indicates superior results of DEFSA over
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Fig. 4 Ranges of F-measure degrees, resulted from running the five clustering algorithms on the eight data sets; a)
Parkinson; b) Hepatitis; ¢) Dermatology; d) Breast tissue; e) Iris; £) Wine; g) Artset]l and h) Artset2

Table 2: Runtimes in seconds, consumed by the six algorithms on the eight data sets

Source/Algorithms DEFSA DEFCM DE SOM AL

Parkinson 0.2069 (0.0013) 0.2267 (0.0789) 0.0102 (0.0147) 0.9330 (0.0935) 0.1110 (0.2572)
Hepatitis 0.1923 (0.0019) 1.0340 (0.1052) 0.8929 (0.0472) 1.4637 (0.0259) 4.0115 (0.2039)
Dermatology 0.8149 (0.0442) 0.2653 (0.0148) 0.0319 (0.0033) 1.4241 (0.0418) 0.0620 (0.0161)
Breast tissue 0.3845 (0.0451) 1.3630 (0.0762) 0.0186 (0.0085) 1.8897 (0.0843) 0.0202 (0.0044)
Tris 0.1740 (0.0020) 0.3351 (0.0328) 0.0462 (0.0022) 0.0062 (0.0012) 0.8886 (0.0670)
Wine 0.8110 (0.2436) 0.9044 (0.4690) 0.2567 (0.0553) 2.1069 (0.7012) 3.7740 (0.9148)
Artset] 1.2343 (0.3338) 0.0453 (0.0187) 0.0590 (0.0386) 0.9232 (0.0328) 0.1333 (0.0135)
Artset2 1.3808 (0.2619) 0.0457 (0.0016) 0.0148 (0.0041) 0.9050 (0.0705) 0.1302 (0.0097)

BRold face indicates the best muntime

Table 3: F-Measure values, FCM objective degree and XB values resulted from running the six algorithms on the eight data sets

Source/Algorithms DEFSA DEFCM DE SOM AL
Parkinson
F-measure 0.8060 (0.0025) 0.7477 (0.0290) 0.6143 (0.0000) 0.59210 (0.0020) 0.7522 (0.0000)

FCM objective values
XB

Hepatitis

F-measure

FCM objective values
XB

Dermatology
F-measure

FCM objective values
XB

Breast tissue
F-measure

FCM objective values
XB

15.2205 (3.0333)
1.9237 (0.2483)

0.7994 (0.0084)
19.6489 (3.0139)
1.6353 (1.1786)

0.9618 (0.0000)
19.2166 (0.6867)
1.6905 (1.0568)

0.8803 (0.0101)
0.4789 (0.0453)
0.5062 (0.1909)

30.7225 (9.9300)
0.7071 (0.3310)

0.7883 (0.0107)
25.5466 (0.0000)
3.0354 (0.0871)

0.9109 (0.0276)
21.1676 (1.6497)
5.9994 (0.9800)

0.8060 (0.0045)
0.5431 (0.1678)
0.5700 (0.0715)

25.0486 (0.0022)
0.4208 (0.0050)

0.7780 (0.0308)
28.5466 (0.0001)
2.0513 (0.0003)

0.8294 (0.0089)
19.9415 (0.0000)
2.0076 (0.0013)

0.7979 (0.0041)
1.8233 (0.0482)
0.3970 (0.0145)

26.7978 (0.1202)
0.84600 (0.0770)

0.77410 (0.0032)
28.5466 (0.0001)
3.05160 (0.0008)

0.88350 (0.0307)
22.1262 (0.6770)
5.0366 (2.95580)

0.78850 (0.0041)
1.38580 (0.0049)
0.35340 (0.1845)

397165 (9.9309)
0.6081 (0.4656)

0.7507 (0.0224)
25.5466 (0.0000)
3.0514 (0.0001)

0.7483 (0.0000)
21.1676 (1.6497)
6.3875 (3.1366)

0.5654 (0.0000)
1.6312 (0.0000)
1.3439 (0.0000)
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Table 3: Continue

Res. J. Applied Sci., 9 (7): 452-460, 2014

Source/Algorithms DEFSA DEFCM DE SOM AL
Iris
F-measure 0.9825 (0.0000) 0.9495 (0.0000) 0.8923 (0.0000) 0.8111 (0.0000) 0.8153 (0.0000)

FCM objective values
XB

Wine

F-measure

FCM objective values
XB

Artsetl

F-Measure

FCM objective values
XB

Artset2

F-measure

FCM objective values
XB

1.8371 (0.2429)
0.5723 {0.0107)

0.9613 (0.0000)
16.6178 (2.6296)
1.1823 (0.0132)

0.9994 (0.0013)
5.0368 (0.3895)
1.1504 (0.0058)

1.0000 (0.0001)
4.5263 (0.0980)
0.1398 (0.0015)

1.8668 (0.3055)
0.2149 (0.0863)

0.8659 (0.0073)
33,9205 (0.0001)
0.6008 (0.0001)

0.9982 (0.0015)
6.9644 (0.2183)
2.1260 (0.0370)

0.9999 (0.0001)
4.6066 (0.8736)
0.3311 (0.0544)

2.8842 (0.4552)
0.2436 (0.1509)

0.8464 (0.0579)
50.5369 (5.7725)
0.6659 (0.2823)

0.0976 (0.0013)
64631 (0.9912)
2.1387 (0.0154)

0.9999 (0.0001)
6.3832 (0.0000)
0.2356 (0.0220)

3.6518 (0.0001)
0.4566 (0.0001)

0.7805 {0.0000)
221.7619 (0.0002)
0.6258 {0.0000)

0.9305 {0.0368)
6.5053 (0.3269)
1.8656 (0.0726)

0.9804 (0.0000)
5.9478 (0.0046)
0.2435 (0.1150)

1.5191 (2.0058)
0.1410 (0.0524)

0.7099 (0.0000)
$2.7330 (0.3629)
0.6921 (0.1461)

0.9145 (0.0000)
7.5364 (3.2095)
1.2818 (0.0271)

0.9970 (0.0000)
8.9743 (2.8256)
0.5652 (0.0512)

The mean and standard deviations (in parenthesizes) for 10 independent cross validation runs are reported on the top of the bars

the Comparative algorithms in terms of means and
standard deviations (in parenthesizes) with respect to
natural logarithmic values of FCM objective for all cases
of data it also points the better XB degree for most cases.
This confirms the efficiency of the DEFSA regarding both
minimum dissimilarity within a cluster and maximum
separateness between different clusters. However, the
prominent advantage of DEFSA 13 that none arbitrarily
control parameters are required for running exploration
and exploitation. In consequence of these an efficient
dynamic search has been done.

CONCLUSION

This study presents a differential evolution based
fuzzy clustering using self-adaptive trade-off between
exploitation and exploration (DEFSA). The main objective
is to relieve the problems regarding divergence and local
optimal traps, aiming to end up with the global optimal
solution. The experiments are taken on six benchmarks
real-world and two artificial data sets. The comparison
tests are performed on the proposed method, DEFSA
against the former DEFCM clustering, DE, clustering
alone as well as two effective clustering algorithms, SOM
and AL. Among all comparative clustering methods, the
proposed DEFSA reports the highest encouraging results
in terms of F-measure and FCM objective degrees. The
important merit of DEFSA is that it can generate an
efficient dynamic exploitation and exploration mecharnism
without any arbitrarily defined trading-off parameter. The
idea behind this is to heuristically consider the gap
between two current best cluster partitions as the
exploitation area and the rest outside the gap as the
exploration one. However, the runtime is not much
attractive. Future research may focus on some other
methodologies of discovering the proper search space for
exploration and exploitation using only an individual
partition to achieve better runtime results.
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