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Abstract: This study proposed a robot path planning technique that employs Laplacian Behaviour-Based
Control (LBBC) for space exploration which relies on the use of Laplace’s equation to constrain the generation
of the potential function of the configuration space of a mobile point-robot. The LBBC provides the Searching
algorithm with the capability to escape from flat region, whilst iteration via Four-pomt Explicit Decoupled Group
SOR (4EDGSOR) provides fast computation for solving the Laplace’s equation that represent the potential

values of the configuration space.
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INTRODUCTION

One of the most difficult problems in robotics
applications 1s developing robust autonomous motion
planning. ITn order to build a truly autonomous mobile
robot, it must have the capability to efficiently and reliably
plan a route from start to the goal point without colliding
with obstacles in between. Path Planmng algorithms
attempt to deal with the problem of establishing a medium
of communication between initial and final configurations
so that the robot can traverse the field safely. Various
algorithms exist trying to solve this problem but all have
shortcomings. The difficulty 1s due to the complexity of
path planning problem where it increases exponentially
with the dimension of the configuration space.

In order to ensure completeness, every point in the
configuration space has to be considered in the
computation. Many Global Path Planning Methods
presuppose a  complete of the
configuration space. Their main drawbacks 1s that at best
they are computationally expensive and often intractable.
Potential field and bug approaches are local methods that
do not make tlis assumption but are not complete
methods. Thus, produce the occurrence of local mimima or
loops that will often cause this class of path planners to
fail.

representation

This research attempts to solve robot path planning
problem by employing local control known as Laplacian
Behaviour-Based Control (LBBC) for an efficient

exploration of the environment model. This local control
of LBBC relies on the temperature distribution in the
enviromment to guide its exploration. Consequently, the
temperature distribution in the environment is computed
by solving Laplace’s equation. The solutions of Laplace’s
equation also known as harmonic functions can be used
to represent temperature values in the configuration space
to be used for simulation of path generation. In this
research, several experiments were conducted to study
the performance of using fast numerical technique via
Four-point EDGSOR (4EDGSOR) Iterative Method to
generate robot path in several sizes of environment with
varying number of obstacles.

LITERATURE REVIEW

This study is tremendously inspired by the pioneer
research carried out by Khatib (1985). His research
introduced the use of potential functions for robot path
planning. It views every obstacle to be exerting a repelling
force on an end effector while the goal exerts an attractive
force. Koditschek (1987) using geometrical arguments
showed that at least in certam types of domains there
exists potential functions which can guide the effector
from almost any point to a given point. These potential
fields for path planning however, suffer from the
spontaneous creation of local mimma.

Comnolly ef al. (1990) and Alashita ef al. (1990)
independently developed a global method using solutions
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to Laplace’s equations for path planning to generate a
smooth, collision-free path. The potential field is
computed in a global manmner, 1.e., over the entire region
and the harmonic solutions to Laplace’™s equation are
used to find the path lines for a robot to move from the
start point to the goal point. Obstacles are considered as
current sources and the goal 15 considered to be the sink
with the lowest assigned potential value. This amounts to
using dirichlet boundary conditions. Then, following the
current lines, i.e., performing the steepest descent on the
potential field, a succession of points with lower potential
values leading to the point with least potential (goal) 1s
found out. It is observed by Connolly et al. (1990) that
this process guarantees a path to the goal without
encounterng local mimma and successfully avoiding any
obstacle. Connolly and Grupen (1993) was attracted by
the properties of harmonic functions that had been found
useful to be utilized for robotic applications.

In the past, various methods have been proposed for
solving Linear System in order to obtain the harmonic
functions. The standard methods are Jacobi, Gauss-Seidel
and SOR (Sasaki, 1998). Meanwhile, several others have
reported the use of harmomc functions in robotics.
Silva Ir. et al. (2002) used harmonic functions for robot
exploration. Kazemi and Mehrandezh (2004) employed
harmonic function-based probabilistic maps for their
sensor-based robot path planmng. Rosell and Imguez
(2005) combine harmonic functions with probabilistic
cell decomposition for solving path planning problem.
Meanwhile, Daily and Bevly (2008) used analytical
solution for arbitrarily shaped obstacles. Garrido et al.
(2010) had applied fimte elements to obtain harmonic
functions for robotic motion. More recently, harmonic
functions were used for real-time obstacles avoidance in
Szulezynski et al. (2011).

LAPLACTAN BEHAVIOUR-BASED CONTROL

Traditional approach robot programming assumes the
availability of a complete and accurate model of the robot
and its environment, relying on planners to generate
actions (Brooks, 1985). Unfortunately, this approach has
several disadvantages. One main drawback 1s that they
require huge amounts of computational resources. This
drawback is much obvious for an autonomous mobile
robot that must carry its own computational resources.
Secondly, this approach must be based on lughly
accurate model thus 1t requires a mumber of high-precision
sensors which are also often expensive. These sensors
however are subject to noisy data. Finally, this sense plan
act paradigm 1s by nature sequential thus it would
fail if the world happens to change m between of
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phases. Furthermore, there is always delay between
sensing and act due to longer time required in planning.

As an alternative to the traditional approach, a new
paradigm called subsumption architecture also known as
behaviour-based control is devised (Arkin, 2001). In this
architecture, sensors are dealt with only implicitly in that
they wutiate behaviours. Each behaviour 1s simply layers
of control systems that all run m parallel. Higher level
behaviours have the power to temporarily suppress lower
level behaviours. Therefore, a set of priority scheme is
used to resolve the dominant behaviour for a given
scenario. A more rigorous explanation of behaviour-based
approach for controlling robot is presented by Saudi and
Hallam (2004).

In this research, mspired by the behaviour-based
paradigm approach to robotics control, the Searching
algorithm employs Laplacian Behaviour-Based Control
(LBBC) for robust space exploration of the configuration
space. The LBBC comprises four core behaviours, 1.e.,
keep-forward, follow-wall, avoid-obstacle and find-slope.
All these core behaviours make use of the potential
values represented by temperature distribution in the
configuration space which are computed numerically to
provide guidance during search exploration.

Keep-forward behaviour: The keep-forward behaviour is
a core behaviour that keeps the searchung moving forward
in the same direction as long as the temperature at current
location is higher than the next location. When the
searching encounters ascending slope, flat region,
obstacles or walls, the keep-forward behaviour stops and
other behaviours would take over. The main aim of tus
behaviour is to guide the searching by following the
descending slope until the goal location 1s found.

Follow-wall behaviour: This follow-wall behaviour
provides the search with the capability to follow the wall
for a specified number of steps. With this behaviour, it
will command the searching to keep turmning gradually
until its direction 18 parallel with the wall. It provides the
searching with the capability of traversing the narrow
path and sharp corner. In this implementation, the
follow-wall behaviour 1s executed for every a specified
number of steps. After that the searching switches to
find-slope behaviour.

Avoid-obstacle behaviour: If the searching hits an
obstacle or wall, it will tngger the searching to backup and
turn 90° to the left or right alternately. By turning
alternately to the left and right, it provides the searching
with the capability to escape from a difficult position such
as sharp corner.
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Find-slope behaviour: When the find-slope behaviour
takes over, it will command the searching to move
randomly hoping to encounter a descending slope that
consequently triggers keep-forward behaviour. With this
behaviour, the searching 1s capable of moving away from
a flat region to continue its descending move towards
goal location.

HARMONIC FUNCTIONS

A harmonic function on a demain Q<R” 1s a function
which satisfies Laplace’s equation:

R

Vi = =0 (1
¢ Z v
Where:
%X, = The ith cartesian coordinate
n = The dimension

In the case of robot path construction, the boundary
of Q (denoted by 3Q) consists of the outer boundary of
the workspace and the boundaries of all the obstacles as
well as the start point and the goal point in a
configuration space representation. The spontaneous
creation of a false local minimum inside the region is
avoided if Laplace’s equation is imposed as a constraint
on the functions used as the harmonic functions satisty
the min-max principle. Hence, the only types of critical
points which can occur are saddle pomnts. For a
path-planmng algorithm, an escape from such critical
points can be found by performing a search in the
neighbourhood of that point. Laplace’s equation can be
solved numerically. Standard methods are Jacobi and
Gauss-Seidel but faster computation can be obtained
using  Successive-Over-Relaxation (SOR)  Tterative
Method.

In the framework used in this study, the robot is
represented by a point in the environment model or also
known as configuration space. The path planning problem
15 then posed as an obstacle avoidance problem for the
point robot from the start pomt to the goal pomt in the
configuration space which can have either square or
rectangular outer boundaries having projections or
convolutions inside to act as barriers. Apart from
projections of the boundaries some obstacles inside the
boundary are also considered. The configuration space is
designed in grid or discrete form and the coordinates and
function values associated with each node are computed
iteratively by applying numerical technique to satisfy
Eq. 1. The highest temperature is assigned to the
start point whereas the goal point is assigned the
lowest. In some cases with Dirichlet conditions, the start
point 1s not assigned any temperature. In this study,
Dirichlet boundary conditions are employed thus the
results are processed by assigning different temperature
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values to the boundaries and obstacles and lowest
temperature for the goal point. No temperature values are
assigned to the start pomnts. In this research, solution to
the Laplace’s equation were subjected to Dirichlet

boundary conditions @[ = ¢, where ¢ is constant.

FORMULATION OF FOUR POINT-EDGSOR
(4EDGSOR) ITERATIVE METHOD

In the literature, Jacobi and Gauss-Seidel (Sasaki,
1998) had been used for solving any linear system. More
recently, Daily and Bevly (2008) use analytical solution for
arbitrarily shaped obstacles. Others employed Block
Tterative Methods mainly on various points of Explicit
Group (EG) methods mcluding Evans (1985), Evans and
Yousif (1986), Ibralum and Abdullah (1995),
Sulaiman et al. (2007) and Hasan et al. (2011). They
pointed out that the Block Tterative Method is more
superior compared to the traditional Powmnt Iterative
Methods. In robotics, the previous researches on
utilizing block iteration for solving robot path planning
via Laplace’s equation produce encouraging results
(Saudi and Sulaiman, 2010a-c, 2012a-b) although, they
were carried out without LBBC. Saudi and Sulaiman
(2012¢) introduce the use of LBBC for robust robot
exploration. Subsequent study (Saudi and Sulaiman,
2012d, 2013, 2014) reported significant performance
Lmprovermerit.

Tet us consider the two-dimensional TLaplace
equation in Eq. 1 defined as:

(2

By using the second-order central difference scheme,
researchers can simplify the five point second-order
standard finite difference approximation equations for
problem 2 as generally stated in the following equation:

U, +U.,,+U  +U_, —4U, =0 3)

i+1,1 Ll i

Equation 3 is the standard Gauss-Seidel Tterative
Method for solving linear system. To enhance
convergence speed, an approach called Successive
Over-Relaxation (SOR) Method 1s added to Eq. 3 as

can be shown (Young, 1972):

k
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k
]

+UK Uk (4

1,1-1 1, 7+1

Uk+1 — 9

(Uk+1 +U
L] 4 i1,

J+{1e)u

Where the optimal value of w is defined in the range,
l1<w<2. In practice, several runs of computer program
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implementation of Bq. 4 is carried out with different value
of w. The value of w is considered optimal when the
program converges with the less number of iterations. By
taking w = 1, the SOR Iterative Method will represent
Gauss-Seidel Method.

Let us consider a block of four node points to form a
(4%4) Linear System as shown in Fig. 1 and defined as:

4 -1 0 0 ij 3,
_1 4 O 0 1+1,7+1 Sz (5)
o 0 4 -1)|U,, i S,
o 0 -1 4 U S,
Where:
3, = U1-1,J-1+U1-1,J+1+U1+1,J

- U1 ]+2+U1+2 ]+U1+2, i+
U +U1+2 j-1 U1+2,j+1

i,j-1

U1 1 _|+U1 L+2 U1+1,_|+2

[y

[y

S
S
Ss

The Linear System in Eq. 5 can be decomposed
independently as two (2x2) matrices. Thus, they can be
easily defined as:

FIEEA
Ui | 15[1 418,
And:
o
Ui | 1501 48,

By adding a weighted parameter w to Eq. 6 and 7, the
implementation of the AEDGSOR Tterative Method can be

shown as:

Uit = —(43 +8,)+ (1- o)U;
(8)
U1k:111+1 (S +48,)+ (1~ (’D)Um L+l
And:
Ut = —(43 +8,)+ 1-o)Uy,, |
)
U, = —(s +48,)+ (1-)U!

As shown m Fig. 1, the position of numbers m the
solution domain for n = 7 shows that the computational
execution starts at number 1 and stops at last number 16.
The actual computation can be implemented by using
either Eqg. 8 or 9. Once executed, this iterative process

357

Y-axis

4
X-axis

Fig. 1. Ilustration of 4EDGSOR iteration for solution
domain (n=7)

is only terminated when there are no changes of any node
points from one sweep of iteration to the next. In this
process, a very high precision of computation is required
to reduce the occurrence of flat area m the final
solution.

EXPERIMENT

The environment setup consists of three different
sizes, namely, 128%128, 256%256 and 512x512. The goal
point was set with a fixed and lowest temperature values
whereas all three start points were assigned with no
particular temperature values. Varying shapes of inner
walls and outer boundary walls was placed mn the
environment with various shapes. In the initial setting,
Dirichlet boundary condition was applied where the walls
and obstacles were fixed with high temperature values. All
other points were set to zero temperature value except
goal point which was set to the lowest temperature
values.

The computation process was run on Intel Core 2
Duoe CPU running at 3 GHz speed with 1 GB of RAM. The
iteration process to compute temperature values
numerically at all points would continue until the stopping
condition is met. When there was no more changes in
temperature values the loop 1s terminated where the
difference of calculation values was very small, i.e., 1.07".
This very high precision was necessary to avoid flat area,
also known as Saddle points, in the solutions thus, would
cause the path generation to fail.

Table 1-3 show the number of iterations, maximum
error and elapsed time (in msec:imsec), respectively
required to compute all temperature values mn the
envirorment for all numerical techmques compared in the
experiment.
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Table 1: Number of iterations for several iterative methods
Size of environment

Iterative method 28x128 256x256 512x512
GS 22342 81003 289040
SOR 1366 5225 19236
EGSOR 1003 3898 14405
4EGSOR 667 2696 10066
HSSOR 660 2687 10052
4EDGSOR. 489 2045 7687

GS8: Gauss-Seidel; SOR: Successive Over-Relaxation; EGSOR: Explicit
Group with SOR; 4EGSOR: Four-point EGSOR; HSSOR: Half-Sweep
SOR; 4EDGSOR: Four-point Explicit Decoupled Group SOR

Table 2: Maximums error for various iterative methods
Rize of environment

Iterative method 128=128 256x256 512x512
GS 0.9995°1 0.9999-10 0999910
SOR 0.9956°10 0.9982710 0.9997-10
EGSOR 0.9838710 09983710 0.9995710
4EGSOR 0.9983~1 0998171 099871
HSSOR 0.977071 09989710 0.9999-10
4EDGSOR. 0.9812°1° 099261 0998571

Table 3: The performance of various iterative methods in seconds
Size of environment

Iterative method 128x128 256x256 512%512
GS 0:15:875 3:59:797 65:6:297
SOR 0:00:859 0:15:390 4:23:498
EGSOR 0:00:750 0:12:375 3:16:859
4EGSOR 0:00:500 0:08:219 2:12:906
HSSOR 0:00:219 0:03:109 0:45:641
4EDGSOR 0:00:203 0:03:016 0:40:594
120 (@
100
80
B
= 60
>
40
20
120 (©
100
g 80
=
> 60
40
20
20 4 60 8 100 120

Points

Values

Values

Figure 2 shows the performance of several
iterative methods in varying sizes of environment.
Clearly, 4AEDGSOR Iterative Method proved to be very

fast compared to the previous methods.
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Fig. 2 Number of iterations against various iterative
methods for different sizes of environment
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Fig. 3. a) Path is successfully generated in a simple and sparse environment from three starting points to a goal point;
b) The path generation process failed to reach the goal pomt when the length of horizontal wall i1s extended twice
to the right; ¢) With LBBC, the algorithm switches to find-slope behaviour and then follow-wall behaviour to
escape from flat region and d) The LBBC algorithm switches back to keep-forward behaviour to find the goal point
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Once the temperature values were obtained, the
Searching algorithm would make use of them to guide
its exploration. In the previous research (Saudi and
Sulaiman, 2010a-c, 2012a-b), the path can be generated
successfully even without LBBC, if the environment
space was simple and sparse in which the gradient from
start points to goal point are smooth (Fig. 3a). However,
the Searching algorithm failed to reach the goal pomt
when the horizontal wall was extended as reported by
Saudi and Sulaiman (2012¢, d, 2013, 2014). In Fig. 3b, only
one path was successfully generated whereas the other
two start points got stuck in the flat region. Whereas, in
Fig. 3¢ by employing LBBC, the Searching algorithm
would be able to escape from flat region and continue its
exploration by utilizing find-slope behaviowr until it
detects a wall m which the algorithm switches to
follow-wall behaviour. Finally, in Fig. 3d, the LBBC
algorithm switches back to keep-forward behaviour until
it reaches the goal point.

CONCLUSION

The experiment demonstrates that complete search
offered by numerical technique is indeed very attractive
and feasible for solving difficult robot path planning
problem. This 18 mamly due to the availability of advanced
techniques recently as well as the availability of fast
machine nowadays. Figure 2 shows that AEDGSOR 1s very
much faster than the earlier iterative methods. Table 3
shows that 4EDGSOR is slightly faster than HSSOR
whereas SOR, EGSOR and 4EGSOR take =4, 3 and 2 min,
respectively. The benchmark Gauss-Seidel is very slow by
taking >1 hto compute all nodes.

In the future research, researchers would consider
faster numerical implementation for solving robot
path plarming including quarter-sweep iteration as
discussed by Muthuvalu and Sulaiman (2011a, b) and
Fauzi and Sulaiman (2012) for computing the solution of
Laplace’s equation.
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