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Abstract: In this study, an analytical expression for the solution of the ratio-dependent predator-prey system
with constant effort harvesting by an adaptation of the Homotopy Perturbation Method (HPM) is presented.
The HPM is treated as an algorithm for approximating the solution of the problem in a sequence of time
intervals, i.e., HPM is converted into a Hybrid Numeric-Analytic Method. Residual error for the solution is

presented.
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INTRODUCTION

Most modelling of biological problems are
characterized by systems of Ordinary Differential
Equations (ODEs). The prey is subjected to constant
effort harvesting with r, a parameter that measures the
effort bemng spent by a harvesting agency. The harvesting
activity does not affect the predator population directly.
Tt is obvious that the harvesting activity does reduce the
predator population indirectly by reducing the availability
of the prey to the predator. Adopting a simple logistic
growth for prey population with e>0, b>0, ¢>0 and ¢>0
standing for the predator death rate, capturing rate and
conversion rate, respectively, researchers formulate the
problem as (Ghotbi ef al., 2008):

dx(t) _ _
R x(t)(lfx(t))fmfrx(t), x(t,)= ¢,

dy(t)

dt y(t)+x(t)

where, x(t) and y(t) represent the fractions of population
densities for prey and predator at time, respectively.
Equation 1 is to be solved according to biologically
meaningful initial conditions and x(t)=0, y(t)=0.

Biazar and Montazari (2005) and Chowdhwy ef al.
(2009) wused the Adomian Decomposition Method
(ADM) to handle the systems of prey-predator problem.
Yusufoglu and Erbas (2008) and Rafei et ol (2007)
employed the Varational Iteration Method (VIM) to
compute an approximation to the solution of the system
of non-lmear differential equations goverming the
problem. Biazar ef af. (2005) used the Power Series
Method (PSM) to handle the systems. All the solutions
above are 1n the form of convergent power series with
polynomial base function.

In recent years, a great deal of attention has been
devoted to study HPM which was first invented by
He (2003) for solving a wide range of problems whose
mathematical models yield differential equation or system
of differential equations. HPM has successfully been
applied to many situations. Chowdhwy et ol (2009)
present new modification of HPM by dividing the solution
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interval to finite number of subintervals. Alomari et al.
(2009) applied the method for solving Schrodinger
equation wich has complex solution.

SOLUTION PROCEDURE

Firstly, consider Eq. 1 subject to:

X(t*) =q, y(t*) =g 3

Researchers note that when t” = 0 we have the initial
condition of Eq. 1, it 1s straightforward to choose:

Xt =c;, v, (t)=¢, 4

as the mitial approximations of x(t) and y(t) and the linear
operator should be:

(3)

with the property:

L[A]=0 )

where, A 1s the integration comstant which will be
determined by the initial condition. Tf qe[0, 1] indicate the
embedding parameter then the zeroth-order deformation
problems are of the following form:

(- QLIX(t; @)= x, (D] = N[kt @), (6 ] (7D
(1-LIF(t @—y, (O] = K @), §( ] &)

subject to the initial conditions:
Kt q=c, Jq=c, )

i which researchers define the non-linear operators N,
and N, as:

N, [%(t; q), ¥(t, )] = =Rt p(1-R(t; gD+

bX(t; ¥t q)
Yt @+ X(t; @)
_ ¥t q) ekt ¥t q)
&+ q)

ARt q)
at
+1%{t; q)

N [R(E; @), ¥(t; )

+ef(t, q)

24

For q = 0 and q = 1, the above zeroth-order
deformation Eq. 7 and 8 have the solutions:
R(t 0)=x, (1), F(t 0)=y, (0) (10)
And:

&(t D=x(0, §t D=y(b) (1)
when ¢ increases from 0-1 then & @) and () vary from
%,(t) and y,(t) to x(t) and y(t). Expanding % and ¥ in
Taylor series with respect to g, researchers have:

&0t @) = x,(D+ 3 %, (D",
m=1 (12)

(6.0 =y, (0+ 3y, (09"

in which:
e L
m!  &q”
(13)
1 &™y(t;
=L y(mq)
m! &g

Therefore, researchers have through Eq. 10 that:

X(t)= x, (O+ ixm (t)
m=1 (14)

y(h =y, (tr+ Z_‘,ym ()

Define the vectors:

K= §x, (1), X, (), x_ (1)}
yO={y, (0 y, (0., ¥, (O}

(15)

Differentiating the zeroth-order Eq. 8 and 9, m times
with respect to ¢ then setting = 0 and finally dividing by
m!, researchers have the mth-order deformation equations:

Llx,(t)-x.x,, (O] =R, (X(t), ¥(1) (16)
LIy.(0) - %y, (0] =R, (X(t), y(t) (17)

with the following boundary conditions:
%, (1)=0, y,(t)=0 (18)

for all m=>1 where:
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6m_lN ~ t, ) ~ t,
R, (X(, J(0)~— LR @, 0 )

E

(m-1)! oq”! e
1 FNR(E Q) Q)
R, LX), 5 (m—1) ™ L:n

(19)

This way, 1t 15 easy to solve the lmear non-

homogeneous Eq. 18 and 19 at general imtial conditions

by using Maple, one after the other in the order
m =1, 2, 3, .... Thus, researchers successfully have:

01(—01 +7c,+10c] +10¢, 02)(t— t*)

X, (t)y=— .
() 10(c, + ¢;)
® 02(301+502)(t—t*)
ti=—
o 10(c, +¢,)
1
X, () =———— ¢ (¢’ —30¢’ +200¢’ +19¢%c
2 200(01+02)3 1( 1 1 1 1¥2
+19¢, ¢l + 49¢) + 70c’c, + 310¢/e] + 210¢, ¢}
+600¢;c, +600cic +200c%cd )(t— '),
y,(t)=— 302(72503 7901374701202

200(c, + ¢, )

—51c,cl +20cle, + 20cfc§)(t - t*)2

By the same way, researchers can get the first fourth
term to be as analytical approximate solution as:

x(t); le(t), y(t) Zyl(t)

(), y(t)
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terms. Now researchers divide the interval [0, T] to
subintervals by time step At = 0.01. Then, researchers
start from the mitial conditions and researchers get the
solution on the interval [0, 0.01). Further, researchers take
¢, =x (0.01) and ¢, = y(0.01) and t" = 0.01, so researchers
get the solution on the new interval [0.01, 0.02] and so on.
Therefore, by choosing this mitial approximation on the
starting of each mterval, the solution on the whole
interval should be continuous. Tt is worth mentioning that
if researchers take t' = 0 and researchers fixed ¢, and c,
then the solution will be the standard HPM solution
which is not effective at large value of't.

ANALYSIS OF RESULTS

In this study, researchers compute the result using
above algorithm for different cases which mention in the
Table 1. Figure la-d presents the population fraction
versus time for prey population fraction x(t) and predator
population fraction y(t) for the fourth cases. Moreover,
the residual error using standard HPM and the new
algorithm 13 given in Fig. 2b and d. It 15 clear that the error
within the range 107"* which mean that is very small and
1t 1s not be possible in the standard HPM which give error
0.2 in small value of t as in Fig. 2a and c.

Table 1: Parameter values used for illustration purposes

Case x(0) y(0) b c e r
1 0.5 03 0.8 0.2 0.5 0.9
2 0.5 03 0.8 0.2 0.5 0.1
3 0.5 0.6 0.5 0.5 03 0.1
4 0.5 0.2 0.5 0.5 0.1 0.2
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Fig. 1: Population fraction versus time; a) case 1; b) case 2; ¢) case 3 and d) case 4
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Fig. 2: Residual error for; a, ¢) HPM solution and b, d) MHPM solution

CONCLUSION

In this study, researchers interested to find the
approximate analytic solution of the system of coupled
norlinear ODEs (1) by treated the HPM as an algorithm
for approximating the solution of the problem in a
sequence of time intervals. Residual error for the present
solution is introduced.
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