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Abstract: Image segmentation plays a vital role in medical imaging applications. Image processing techniques
provide a good tool for improving the manual screening of CT samples of lung. Developing a robust and
efficient algorithm for medical image segmentation has been a demanding area of growing research of interest
during the last two decades. This research reports on Estimation of objects by segmenting Computer
Tomography (CT) lung images using supervised contextual clustering method. Matlab Software regionprops
function has been used as one of the criteria to show the performance of Contextual Clustering (CC). The CC
segmentation shows more segmented objects with least discontinuity within the objects n the CT lung image.
The segmented results are compared with the conventional algorithms such as Sobel, Prewitt, Roberts, Log and
Zero crossing. The results obtained from the experiments show that the proposed approach is found to be
efficient and robust against segmentation faults when compared to the existing methods.
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INTRODUCTION

Image segmentation 1s a process of partitioning an
image into non-overlapped and consistent regions that
are homogeneous in nature with respect to some
characteristics like mtensity, color, tone or texture
(Dong and Xie, 2005). Image segmentation plays an
umportant role in many applications such as robot vision,
object recogmition, remote sensing and medical imaging.
A thorough research has been reported in the literature,
regarding the development of wvarious techniques
specifically for segmenting the lung fields. Computed
Tomography (CT) is the most effectively used diagnostic
immaging examination for chest diseases such as lung
cancer, tuberculosis, pneumonia and pulmonary
emphysema. The lung segmentation plays a crucial role in
pulmonary nodule detection by increasing reliability and
accuracy mean while decreasing computational cost of
detection.

Lung nodules mdicate lung abnormalities. Early
detection of nodules can help in saving lung patients.
Lung nodules can be detected by radiologists through
examimng lung mages. Lung Nodule Detection (LND) in
the Computer Tomography (CT) images 1z still a
challenging task. Inspite of 1ot of mathematical algorithms
that have been developed over the period of years and
umnplemented as Automatic LND (ALND) still intervention
and suggestions by a good radiclogist is a must.

Related work: Lung segmentation must be done
accurately because nodules may be on the boundary of
the lung parenchyma. If the entire lung 15 not segmented
accurately such lung nodules will be lost and it reduces
the detection accuracy. Main goal of lung extraction s to
separating the voxels corresponding to lung tissue from
the voxels corresponding to the surrounding anatomy.

First hand assessment of lung affected patients for
radiologic diagnosis 1s done by Hansell (2000) by using
cross-sectional and projectional imaging techniques such
as chest radiography.

CT imaging provides better identification, localization
and quantification of small lung nodules (Way et ai., 2010,
Ye et al., 2007, Golosio, 2009). Computer Aided Detection
(CAD) of lung nodules increases sensitivity and
specificity (Yao et al., 2011). The performance of CAD is
based on its capability in detecting LN (Giger et al., 2008).
CAD can be used for identifying and diagnosing
infectious pulmonary diseases, segmentation and
registration of pulmonary anatomical structures, detection
and classification using texture and shape analysis for
respiratory tract infections (Bagci et al., 2012).

Nodules and nodular patterns are seen both mn chest
radiographs and m CT scans. A single nodule has the
appearance of a rounded or irregular opacity which may
be well or poorly defined; solid, non-solid or partly selid
and of soft tissue or GGO usually with a diameter <3 cm
(Hansell et al., 2008).
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The existing problem in CT Lung image segmentation
is to have continuity inside each segmented objects.
Many methods have been used for segmentation of CT
lung images. An accurate segmentation procedure called
a multi level thresholding was proposed.

Kanazawa et al. (1998) proposed an analytical and
diagnostic procedure by combining the thresholding and
morphology operations to extract the lung regions in CT
images. Fuzzy clustering algorithm was used to extract the
lung and the pulmonary blood vessel regions.

Zhao et al. (1999) used the nodule gradient and
sphere occupancy measurements m order to improve the
shape-based segmentation scheme. The shape criterion
which was included to the algorithm effectively prevents
the high density surrounding structures such as blood
vessels from being falsely segmented as nodule.

Armato and Sensakovic (2004) identifies the ROI
in Computer aided diagnosis of lung nodule detection.
5-17% of the lung nodules was missed in theirr nodule
detection scheme due to the preprocessing segmentation.

Kim et al. (2003) developed a novel segmentation
method to segment the lung region in CT images by
combining the thresholding, region filling and deformable
model. The segmented results are further compared with
thresholding based method. The difference between true
nodules and false nodules can be identified by selecting
the discriminating features such as size, solid shape,
average, standard deviation and correlation coefficient.

The purpose and the contribution of this study is to
propose  contextual clustering segmentation that
guarantees continuity inside each segmented objects of
the CT Lung image.

Difference in the parameters considered in forming
the methods mcluding the properties of the traimng and
test datasets, performance evaluation methods and
characteristics of the targeted nodule plays dommant role
in comparing the performance of Nodule Detection
Methods (Lee etal, 2012).

The existing methods for LND have used different
stages of 1mage processing according to the user
requirements. Segmentation detection methods have been
discussed by Diciotti et al. (2008). Classification detection
methods appear in 2007 (Ochs et al, 2007). The
segmentation-template detection methods appear in
2006 (Ozekes and Camurcy, 2006). The Segmentation-
Classification Detection Methods appear in 2007
(Kim et al., 2007).

MATERIALS AND METHODS

The primary objective of this research 1s to develop
a computer aided system for segmentation of lung region
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from the chest Computer Tomography (CT) images. The
proposed method does not affects the objects present in
the lung mmage. The mam advantage of this approach 1s
that researchers can get the holes and objects present in
the original image after segmentation without any change
in its size and shape.

Contextual clustering based segmentation: [mage
segmentation plays an important role in image analysis
and computer vision and it is considered as one of the
major obstruction in the development of 1mage processing
technology. Recently there has been considerable interest
among researchers in statistical clustering techniques in
image segmentation was inspired by the methods of
statistical physics. These methods were developed to
study the equilibrium properties of large, lattice based
systems consisting of interacting components as
identical. clustering  technique image
segmentation, each pixel 1s associated with one of the
finite number of categories to form disjoint regions.

The contextual clustering based algorithms are
assumed to be drawn from standard normal distribution.
It segments a data into category 1 (w,) and category
2 (w,).

The following are the steps adopted for implementing
the contextual clustering algorithm for segmenting the
lung region from LIDC CT umages:

In a for

Define decision parameter T (positive) and weight of
neighborhood information B (positive). Let N, be the
total number of data in the neighborhood. Let Z, be
the data itself, 1

This proposed approach has two mam sections
namely: Segmentation based on contextual clustering and
objects detection and estimation based on Matlab region
properties:

Classify data with z>T, to w, and data to w,. Store
the classification to C, and C,

For each data 1, count the number of data u
belonging to class w, in the neighborhood of data i.
Assume that the data outside the range belong to w,
Classify data with:

B

N
Z1 + 7(ui_7n)>Toc

cc

to w, and other data to w, Store the classification to
variable C,

If C,#C, and C,#C,, copy C, to C, C, to C, and return
to step iii otherwise stop and return to C,
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The contextual clustering implementation is as
follows:

Step 1: Read a pattern (lung image feature).
Step 2: Sort the values of the pattern.
Step 3: Find the median of the pattern cm.

Step 4: Find the number of values greater than the median
values, U_.

Step 5: Calculate CC wusing C, + (beta/Tcc)»(1] -
(bs/2)).

Step 6: Assign CC as the segmented values.

Figure 1 shows a steady increase in the error as the
beta value changes from 0.1-1. Hence, lower beta value is
preferred for better estimation by CC. Figure 2 shows a
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Fig. 1: Impact of Beta value in CC estimation
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Fig. 2: Impact of Threshold value in CC estimation

steady decrease in the error as the threshold value
changes from 10-100. Hence, higher threshold value is
preferred for better estimation by CC.

RESULTS AND DISCUSSION

LIDC images have been considered in this
presentation. Images of the patient 1.3.6.1.4.1.9328.50.3.68
which contains 123 dicom images have been considered.
The CC segmented images takes as thumbnail in the
windows explorer has been shown in Fig. 3 (Images from
1-45th slice) and Fig. 4 (Images from 46-90th slice).
Remaining slices have not been presented for want of
space.
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Fig. 3: Lung image slice 1-45
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Fig. 4: Lung umage slice 46-90
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Fig. 5: Sample lung LIDC CT image

Fig. 8: Segmentation by Roberts Method

Fig. 7: Segmentation by Perwitt Method

Many of the image slices in Fig. 3 show less
mformation and many of the images in Fig. 5 show more
mformation. Figure 4 shows one of the CT lung slice.
Figures 5-13 show the segmentation by Sobel, Prewitt,
Roberts, Log, Zero crossing, Canny and CC Methods.

Except CC Method, in all other segmentation
methods, the number of objects are more and there are
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Fig. 10: Segmentation by Zero Crossing Method

some objects segmented are not clear. Matlab bwlabel
function has been used and the number objects for each
method 1s shown 1n Table 1. In addition te bwlabel, the
Regionprops command has been used to find out correct
number of segmented objects.

Earlier researchers had used different metrics to
evaluate the segmentation accuracy. In this study,
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Fig. 11: Segmented by CC
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Fig. 12: Comparison of number of objects in each
Segmentation Methods
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Fig. 13: Comparison of total area of pixels in each
Segmentation Methods

Table 1: Number of objects in each Segmentation Methods
Method Objects detected

Sobel 2270
Prewitt 184
Robertz 527
Log 4580
ZEerocross 4580
Contextual clustering 25

researchers have used bwlabel and Regionprops to
evaluate the accuracy of segmentation and it has been
found that CC segmentation is much better when
compared to that of remaining segmentation methods
mentioned 1n this study.
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CONCLUSION

In this study, researchers have proposed a new
method for segmenting lung images based on supervised
contextual clustering method. The main purpose of
proposing contextual clustering method is to improve
the
segmentation. The proposed approach has been found
more efficient when compared with other conventional

segmentation accuracy by reducing the false

segmentation algorithms. Matlab predefined function
bwlabel is used for the estimation of the objects present
in the CT lung image.
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