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Abstract: Filament Winding 1s one of the widely used methods for fabrication of axisymmetric composite
structures. Geodesic curve on the surface is the ideal path for placement of fibers since these curves are stable
path and there is no possibility of slippage of fibers during winding. Pressure vessel with integral end domes
having unequal opening at two ends 1s a typical example. All such examples require deviation from geodesic
path during winding. Non-geodesic winding 1s inherently unstable and prone to slippage. Tendency of slippage
can be resisted only if adequate friction is available. Thus, non-geodesic winding requires investigations of
stability of fiber path. This study deals with theoretical investigations related to stability of non-geodesic
winding on axi-symmetric surface. The relation between the slippage coefficient and the winding angle 1s
obtained to meet stable winding requirements. Limits of deviation from geodesic path and stability of a
predefined path is established through application of differential geometry. Simple design nomograms for

cylindrical sections are established.
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INTRODUCTION

Filament winding 1s a popular production techmque
for composite structures. Filament winding technology
has been so far increasingly applied to develop
lightweight high pressure vessels in commercial and
aerospace industries. Compared to their steel-based
counterparts, filament-wound composite pressure vessels
provide sigmficant advantages such as ligh specific
strength/stiffness and modulus, exceptional fatigue life,
excellent corrosion and chemical resistance. In the
filament winding process, a fiber bundle 1s placed on a
rotating and removable mandrel. For manufacturing of
composite components by filament winding, wet or
prepreg fibers or tapes are placed on a predetermined path
on a mandrel The assembly 1s subsequently cured.
Continuous filaments are an economical and excellent
form of fiber reinforcement and can be oriented to match
the direction of stress loaded 1n a structure. Fuel tanks,
oxidizer tanks, motor cases and pipes are some examples
of filament wound axisymmetric structures under internal
pressure. The trajectory of the fiber path and the
corresponding fiber angles cammot be chosen arbitrarily
because of the stability requirement The fiber path
instability induced by fiber slippage on a mandrel surface

is too complicated to be predicted because it is affected
by many parameters such as temperature, mandrel shape,
fiberresin combmation, surface treatment and so on. Little
research has been focused on the design method using
the continuum theory in combination with non-geodesic
winding law. Koussios et al (2005) derived the
uninterrupted hoop and polar fiber path equation on
cylindrical pressure vessels using non-geodesic
trajectories. Zu ef al. (2010) performed parametric studies
about the Shape optimization of filament wound
articulated pressure vessels based on non-geodesic
trajectories. Little research has been focused on the
design method wusing the continuum theory in
combination with non-geodesic winding law. Most of the
earlier models have employed geodesic winding
principle (Vasiliev et al., 2003) and the netting theory
assumption to design the rotationally convex structures
(Krikanov, 2000). Accurate placement of fibers with
certain tension, on predetermined path largely determines
the quality and strength of the final component. The
geodesic curve on a swrface i3 the ideal curve for
placement of fibers on the mandrel surface since this will
ensure that there 13 no slippage of fibers during winding.
However, for some applications such as a pressure vessel
with integral end domes having unequal opening at two
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ends. Tt becomes essential to deviate from the geodesic
path. Placement of fiber under tension on a non-geodesic
path generates a force component in the direction
tangential to the mandrel surface. This force gives rise to
tendency of slippage. The friction between the mandrel
surface and the fiber is the only resisting force that can
prevent this slippage. For slippage free winding, filament
winding along a non-geodesic path requires effective
balancing of slippage tendency (force component in the
tangential direction) by the frictional force. The magmtude
of the disturbing force depends on the geometry, of the
mandrel surface and the fiber path on the surface.
Similarly, the magnitude of the resisting friction force
depends on the friction characteristics between fiber and
surface together with the geometric parameters of the
mandrel surface and the fiber path. Thus mvestigations
on the stability of fiber on nongeodesic path as well as
limits on deviation from geodesic path on any surface can
be established by application of differential geometry.

Theoretical mvestigation on the stability of
non-geodesic filament winding on an axisymmetric swface
has been presented m this study. As already mentioned,
it is essentially an application of differential geometry.
Although, many of the expressions are applicable to any
arbitrary shape of the surface, these are finally specialized
to axi-symmetric surface as this 1s the shape of the surface
of practical importance.

INTRODUCTION FORCE
EQUILIBRIUM IN FILAMENT WINDING

In filament winding, the fibers are wound on the
mandrel surface under preset tension. Since, the surface
and consequently the fiber is curved, a force of magnitude
F i the direction normal to the fiber will be developed to
balance the tension T at two adjacent points on the fiber.
For non-geodesic winding, the direction of normal to the
fiber will be different from the direction of normal to the
mandrel surface. Researchers can therefore visualize two
components F, and F, of F in the directions normal and
tangential to the swrface, respectively. Let the angle
between the normal to the surface and the normal to the
fiber be . The components F, and F, may be expressed
as:

F.=TFcos|s
F, = Fsmm (1)

The tendency of slippage in non-geodesic winding 1s
due to the destabilizing force Ft in the direction tangential
to the surface. For stable winding, the destabilizing force
Ft has to be resisted by friction force pF, where, p is the
friction coefticient. Thus, the fiber will remain in position
(stable winding) even on a non-geodesic path as long as:
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Fig. 1: The design methodology for filament winding
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For geodesic winding, the direction of normal to the
fiber coincides with the direction of normal to the mandrel
surface, thus making the tangential component of force F
as zero. Hence, there will not be any fiber slippage. The
design of a filament wound structure consists of the
design of the mandrel shape and the calculation of the
fiber path. When designing filament-wound parts use of
an integrated strategy is recommended to make use of all
composite benefits in spite of the restrictions imposed by
the process. The basic methodology used for the design
of filament wound parts is shown in Fig. 1.

SURFACE PARAMETERS AND
FIBER SLIPPAGE

In filament winding, fibers are laid on a mandrel
surface. Researchers can visualize the mandrel as a
surface S and the fiber path as a curve C on the surface.
Shippage condition Eq. 2 earlier 1s based on force balance.
In order to extend the relation to useful equations, it 1s
necessary to express Hq. 2 m terms of geometric
parameters of the mandrel surface and the fiber path. This
study establishes the slippage condition m terms of
geometric parameters of the surface and curve on the
surface.
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Geodesic and normal curvatures: Consider a surface
S (u, v) defined by the parameters u and v. The base
vectors i and &’ at any pomt on the surface are
tangential to the parametric curves v const. and
u = const, respectively. The plane T containing the base
vectors @' and d° at any point is the plane tangential to
the surface S at the point inder consideration (the base
vectors a' and §° at the point lies completely on the
tangent plane). The unit normal to the surface n is normal
to the tangent plane. Let C (s) be a curve on the surface.
It 13 defined by the surface coordinates u (3) and v (s) of
any point on the curve m terms of a parameter S which in
this case is chosen to be the distance measured along the
curve C. Let t, be the unit tangent vector to the curve at
any poit. The unit tangent vector to the curve lies on the
plane T tangent to the surface at the pomt. The curvature
vector k is normal to the curve C with magnitude equal to
the curvature k of the curve. The curvature vector k can
be resolved mto two components 1s shown in Fig. 2:

k

k, +k, 3

Where:

En = The direction normal to the surface (i, =7’) called
Normal Curvature Vector the curve

k, = Lies in the tangent plane T. This is called geodesic
curvature vector of the curve

The direction of the curvature vector Eg 1s normal to
the plane defined by tangent vector of the curve t, and
normal vector to the surface (). T.et b be a unit vector in
the direction of the curvature vector Eg. Then:

“4)

Fig. 2: Defiition of geodesic curvature
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The three unit vectors #i,, i, and b form right

handed triad. The magnitudes of normal and geodesic
curvature vectors of a curve are called the normal
curvature and geodesic curvature, respectively. These are

denoted by % and k_ These are therefore given by:

k, =ki
n - ﬂs (5)
k =kb
The Curvature vector k follows as:
k=k 1n+kb (6)

Consider the projection of the surface cirve C on the
tangent plane T and denote this by C*. For an arbitrary
curve C, the projection C* will be curve with a non-zero
curvature. Tt may be shown that the curvature vector of
C* (projection of curve C on tangent plane T') 1s identical
to the projection of the curvature vector of the original
curve on the tangent plane T. Therefore, the geodesic
curvature vector k, may be interpreted in either of the
following ways:

Projection of curvature vector of C on the tangent
plane T
Curvature vector of projection C of on the tangent
plane T

For a geodesic curve C. The projection C* is a
straight line. The curvature of this path 13 always zero.
Therefore, the curvature constramt will never be violated.

Stability of filament winding: Equation 2 expresses the
stability of filament winding in terms of the force. From the
defmition of normal and geodesic curvatures m Eq. 3 and
definition of F, and F, in Eq. 1, it is obvious that:
k

n

k

g

5 )
E

Therefore, the Eq. 2 representing stability of filament
winding may be expressed in terms of geometric
parameters by:

ko< |ulk, (8)

Equation 8 determines the stability of winding along
a (non geodesic) path in which the terms k_ and k, depend
on geometry of the mandrel surface together with
onentation of fiber path on the mandrel and p 1s the
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coefficient of friction. At this point, it may be appropriate
to take note of the properties of a geodesic curve. For a
geodesic curve:

Normal to the curve and normal to the surface are
identical

Projection of geodesic curve C on the tangent plane
T of the surface S 1s a straight line

Force F does not have a tangential component:
F.=0

Geodesic curvature of a geodesic curve is zero:
k=0

Consequently, there is no tendency of slippage even
for negligible friction. Therefore the curvature constraint
will never be violated.

FILAMENT WINDING EQUATIONS FOR
AXISYMETRIC SURFACE

In this study, the filament winding equations are
derived for an axi-symmetric surface. For axi-symmetric
surfaces, the meridional and circumferential directions are
chosen as the parametric curves. In tlhis case, the
meridional and circumferential directions are chosen as u
and v parameter curves, respectively.

In filament winding, the angle of winding « is an
important parameter. In the context of surface and curve
parameters, the angle of winding 1s essentially the angle
between the tangent to the curve { and one of the
parametric curves u = const. or v = const. Let the angle of
winding « be defined as the angle between the fiber and
the meridional curve v = const. The well known
expressions of geodesic and normal curvatures in terms of
the angle ¢ will be given by the governing equation of
stability.

Geodesic curvature: For a naturally represented curve
C (8) (fiber path) on a surface S (u, v) (mandrel),
Liouville’s formula directly gives the geodesic curvature
of the curve (fiber path) kg in terms of geodesic
curvatures of u and v parameter curves and the angle o:

do
=—+
ds

k @

S

(kg)u €Os8 0, + (k%)v sinoL

where, (k,), and (k,), are geodesic curvatures of u and v
parameter curves, respectively. If the Tt and v parameter
curves are orthogonal (as mn this case), the geodesic
curvatures (k,), and (k_), are given by:
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E, 1
2EG

G, 1

u

2GJE

(k) =
(10)

k), =

where, E and G are the coefficients of first fundamental
fonn of the surface S (u, v). For an axi-symmetric surface,
E and G are independent of v (circumferential parameter).
Thus:

k,), =0 (11)

The geodesic curvatwre kg of a curve C(3) onan
axi-symmetric surface is given by:

k :d—a+lG“ —=sino (12)
B ds 2G

Normal curvature: Euler's theorem expresses normal
curvature k, of a curve at a point on a surface in terms of
Principal Curvatures k, and k, and the angle «. The
principal curvatures k, and k, are curvatures along u and
v parameter curves. The Buler’s theorem states that:

k, = k,cosatk,sina (13)
The principal curvatures k1 and k2 can be expressed
of coefficients of the
fundamental form. The normal curvature kn is then

n terms first and second

expressed as: where 1. and N are the coefficients of the
second fundamental form of the surface:

LY , (NY.,
— |COS"COL+| — |8IN°
E G

Filament winding equations: The equation of stability

(14)

k

n

(no slippage condition) of filament winding along a
non-geodesic path is obtained by substituting Eq. 12 and
14 in Eq. 8 which gives:

%sina +LU {;Jcosza + (g}inza}(l 5)

The mdependent variable in the above equation is
the path length along the curves whereas the parameters

dor

ds

Gu
G

1
2

E, G, L. N and the denivative G, are function of surface
coordinates u and v. In order to solve the equation, the
above equation has to be supplemented by additional
equation. In order to achieve this it may be noted that for



Res. J. Applied Sci., 7 (9-12): 444-450, 2012

natural representation of a curve C(s) on a surface
S (u, v), the scalar product of umit vectors along u
parameter curve at a point on the curve and a tangent
vector along the curve at that point gives:

C0s0L :Jﬁi_“ (16)
5

where, s 1s the arc length. Similarly, the scalar product of

unit vectors along v parameter curve at a point on the

curve and a tangent vector along the curve at that pomnt

gives:

G (17)
ds

sinoL =

The above two equations, rewritten as:

du_ 1 e (18)

ds\/E

E=—sin0t (19

have to be supplemented with the Eq. 15. The variables a
and u may be obtained as a function of path length s by
simultaneous solution of Eq. 15 and 18. Subsequently, v
may be directly evaluated from the third relation Eq. 19.

Although, the mdependent variable s may. Not be as
physically meaningful as other alternatives, namely,
parameter u, the above equations m terms of variable s 1s
most natural and most robust since the solution can be
continued beyond the point of reversal without any
difficulty (not so with u as independent variable).

Sometimes (e.g., cylindrical surfaces) it may be
meaningful to rewrite the set of equations in terms of the
independent variable u. Such alternative form 1s given
below:

dﬂ:_lGu LtanOtJr}l JE L cosor + N sino
ds 2G JE cosa || E G

(20)
2D

dv E
— =, [— tano
du G

This form however has the
singularity around the point of reversal.

disadvantage of

PARAMETERS FOR AXI-SYMMETRIC SURFACE

The coefficients of First and Second Fundamental
Forms appear in the governing Eq. 15, 18 and 19. These

functions will depend on the surface and will be different
for different types of surfaces. In the context of filament
winding on a non-geodesic path, a typical problem is
determination of shape (profile) of isotensoid end dome of
an internal pressure vessel. In this case, the shape of the
surface 1s not known but is to be determined. Thus, the
coefficients are not known aprior but are to be determined
such that the surface represents an Isotensoid dome. In
either case, 1t 1s necessary to define the coefficients of
fundamental forms of an axi-symmetric surface in terms of
function describing the profile.
Consider a global Cartesian Coordinate System
(x, v and z). Let z axis be the axis of revolution
of the axi-symmetric surface. The surface coordinate v
has been assumed as the coordinate in the circumferential
direction. The angle 8, measured in the circumferential
direction is most appropriate for this. If researchers
assume r (u) as the radius of the axi-symmetric surface for
a particular value of the longitudinal parameter u then:

x =1 (u) cosO
y =1 (u) sinf (22)

The nature of function for z will depend on physical
interpretation of uw During the course of study, two
different forms were found appropriate. These, together
with the expressions for coefficients are described.

Most general form for u: Tn this case, the surface
coordinates are given by:

r{u)cosd
8(9)={r(u)sin0 (23)
g(u)

for which the coefficients are given by:
E=r’+g"
G=r’

L--8 8T (24)
Jri+g?

N=—8

Above form was found most convenient for end
domes of pressure vessel

u is identical to axial distance z: In this case, the surface
coordinates are given by:
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x =1 (u) cos0
x =1 (u)smb

Z=1u (25)
for which the coefficients are given by:
E=1+r1"
G=r1’
Lo T (26)

NI
r
J1+1?

N =

This
cylindrical surface.

form was found most convenment for a

NON GEODESIC WINDING: CASE STUDIES

A general purpose computer program, based on the
above was developed for non-geodesic winding of
axi-symmetric sections. The axi-symmetric section can be
defined to the program either by specifying the equation
of the profile (r (u)) or by specifying the functions
describing the coefficients of fundamental forms or simply
by specifying the surface coordinates. Either of the
independent variables (s or u), may be chosen.
this study, researchers shall consider two
examples. The examples were selected keeping m mind

Ir1

filament winding of pressure vessel with end domes.
Although, very simple shape has been chosen (closed
form solution can indeed be obtained for both), it
essentially demonstrates the working of the computer
program.

Helical winding of cylindrical section: Consider a
cylinder of radius R. It 1s most appropriate to use the form
given in u is identical to axial distance z. The filament
winding equation is then given as:

d
—a:i ESinottaHOL
dz R

(27)

The above equation determines the angle of winding
on a cylindrical section for nongeodesic winding. This
gives maximum angle of winding that can be realized for
the friction coefficient . Introducing normalization by:

Lz 28
Eonr (28)

449

Leads to:
(29)

dor .
d—:ismottana

The normalization leads to an Eq. 29 which is
independent of and R and thus valid for all cylinders. The
variation of angle of winding with normalized distance £
is in the form of a single curve as shown in Fig. 3 and can
be used as a nomogram for preliminary design studies.

Helical wincling on spherical section: Consider a sphere
of radius R. Most appropriate choice for the parameter u
is the spherical angle ¢, measured from the base of the
hemisphere. For thus, it 1s most appropriate to utilize the
form given in most general form for w The filament
winding ecuation is then given by:

(30)

In comnection with filament winding, most inportant
parameter is the pole opening radius (radius at the point
of fiber reversal, ¢ = 90°). Since, the equation for spherical
dome is independent of radius R, it is obvious that for
same initial angle of winding and friction coefficient. The
ratio of pole opening radius to the radius of the sphere
will be same for all spheres, irrespective of diameter of the
sphere.

The friction can be utilized to deviate on either side
of the geodesic path. Therefore for any sphere,
researchers can get two values of pole opening (by using
positive and negative values of ), one higher and the
other lower than the pole opening for geodesic winding.
For a given value of friction and mitial angle of winding,
these are the two bounds within which pole opening can

801
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Fig. 3: Design nomogram for cylindrical section
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Angle of winding at dome-cylinder junction

Fig. 4: Pole opeming ratio for hemispherical section
(n=01)

be maintained. The variation of pole opening ratio with
angle of winding at dome-cylinder junction for a typical
value of friction coefficient p = 0.10 15 shown m Fig. 4.

CONCLUSION

For development of a composite pressure vessel
with integral domes having unequal pole opening by
filament winding, it is essential to carry out winding
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on a non-geodesic path. Such is prone to slippage. Tt is
therefore essential to have an apriori estimate of the
maximum realizable deviation from the geodesic path. This
research summarizes the efforts in this direction.
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