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Abstract: Lattice structures due to their low weight and high performance as structural elements have been
widely used in different aerospace applications. In this study, effective parameters on the design of anisogrid

lattice conical shells are investigated. First, filament winding patterns regarding the desired axial strength 1s

decided. Then, regarding geometrical relations, effective parameters in order to form the amisogrid cell are

identified. Distance of circular ribs from each other has an important role in determimng the comcal lattice
structure and eventually in deriving the stiffness matrix. Finally, considering the relations, Finite Element
Analysis Model of the lattice conical structure has been performed by ABAQUS software and buckling analysis
under axial loading 13 done. In deriving the strength results, the verifications of references of this study and

the classic theory have been used.
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INTRODUCTION

Composite lattice structures are one of the most
complex and newest structures which are designed and
produced in both 1sogrid and anisogrid forms. In the past
decade, researches done on polymeric matrix fiber
composite lattice structures have become one of the
scientific and widely used centers of attention and these
structures have a widespread application in different
aerospace structures. These structures as lattice lamina
are used lonely or with mternal or external shells. Lattice
lamina in these structures includes different systems of
ribs which are produced from continuous fibers using
automatic filament winding method. In these structures
under arbitrary loading fibers of the lattice are under
tension or compression which is a quite desirable state for
composites and 15 one of the major advantages of these
structures compared to the conventional structures for
composites. Major characteristics of these composites in
the face of axial compression and bending moment
loadings are different failures occurring due to total
buckling of the structure, failure due to maximum stress in
helical ribs and failure due to local buckling of the helical
ribs in the lattice. Buckling load related to each of the
failure states depends upon geometric parameters and
total dimensions of the structure. In the analysis of these
structures it is supposed that elements of the lattice are
two force members behaving as an orthotropic body and

the relations of orthotropic structures are used here for
the analysis of the total buckling of these structures.
Major application of these structures is in aerospace
industry which widely uses different forms of them
including: curved shaped and annular shells (especially
conical shells). For the purpose of improving the
mechanical properties of the structure and its weight
optimization, composite materials have been used In the
midst of 1960's the finite element method was developed
for the mumerical analysis of these structures. Generally,
these structures are manufactured y advanced forming of
fibers. Also, the ribs use 1n these structures can move in
2up to 4 directions. Design, analysis and manufacture
of these structures are investigated m reference
(Huybrechts and Meink, 1999a, b). More details of
their analysis are included in references (Huybrechts and
Memk, 1996, 1999a, b). In references (Wodesenbet et al.,
2003; Kidane et al., 2003), buckling load analysis of grid
stiffened cylindrical shells is performed. Also, the results
of the experimental test are compared and verified in
comparison with the analytical results. Kim (1999, 2000)
has studied the fabrication and testing of thin composite
isogrid stiffened panels and composite isogrid stiffened
cylinders, so as to investigate their buckling behavior. In
reference (Goldfeld et al., 2005) design and optimization of
laminated conical shells for buckling and maximum
buckling loads has been performed. In this study,
optimization has been performed in two states of causing

Corresponding Author: Jafar Eskandari Jam, Composite Materials and Technology Center, Tehran, ITran



Res. J. Applied Sci., 7 (9-12): 435-443, 2012

the maximum buckling load at certain weight and causing
the minimum weight under a constant critical load. Tn the
study (Goldfeld and Arbocz, 2004), critical buckling load
15 derived from the solution of the govermning nonlinear
partial differential equation with different coefficients.
Blom et ad. (2007) has investigated the optimized stacking
sequence design, so as to aclieve the maximum
fundamental eigenfrequency in comical shells. In the
study (Morozov et al., 2011) buckling of the cylindrical
lattice structure has been done, using Finite Element
Method. Also, m study (Morozov et af, 2011) fimte
element analysis for buckling of the conical lattice shell 1s
studied. In this study, a numerical code is developed for
the conical lattice structure which determines the basic
parameters, buckling under critical axial loading, torsion
moment and bending moment. In this study, design of the
conical lattice structure with the anisogrid cell is
investigated. First, the governing differential equations of
the anmisogrid cell of the comical lattice structure are
derived, regarding the filament winding technique used.
Then, variations of the principal parameters of the design
are investigated in relation to the increase of the number
of helical rib. Later by creating a Fmite Element Model of
the comical lattice structure with the amsognd cell,
buckling analysis of the structure under axial loading is
performed. Also, the variations of the critical buckling
load, relative to increase of thickness, width and the
distance between ribs 1s considered.

MATERIALS AND METHODS

Governing equations of design: Lattice structures are
widely used in different industries. These structures are
highly strong against the destruction caused by impact,
delamination and craze propagation in the structure. One
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of their advantages over other structures is reduction of
weight and manufacture time. Lattice structure 1s made of
a number of helical and circular ribs. These structures can
have up different forms including isogrid and anisogrid.
Generally, the main purpose of using lattice structures 1s
optimal usage of longitudinal properties of the composite
materials used. Also, a schematic of the conical lattice
shell used as a satellite carrier adaptor, at the lower
section of the satellite is shown in Fig. 1.

All the parameters are determined on the basis of the
location of helical and circular ribs. Some of these
parameters depend on the angel of the helical ribs. Also,
some of these parameters as the height of the structure
increases have variations with a certain rate. Because of
the complexity of the geometry of conical lattice shells, in
order to design, one first must divide the effective design
parameters of the structure in two dependent and
independent categories and then perform the complete
investigation procedure of design.

Independent parameters: The number of circular and
helical ribs (n, n,) are independent parameters in the
design of conical lattice structure.

Dependent parameters: Dependent parameters include:
Ay, @, A, a, a, A schematic of the parameters stated here
in the design of annular lattice structure is shown in
Fig. 2.

Since, the design of these structures is intended to
stand axial compression loadings, therefore the most
important problem regarding these structures is the
analysis of buckling and elastic stability. Considering
these facts, design of the lattice structure and eventually
manufacture of it, must be based on a state that shows the
maximum strength against buckling. Amongst different
filament winding pattemns, geodesic pattern 1s the best
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Fig. 1: A schematic of the satellite carrier adaptor (Balepin et af., 2000)
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Fig. 2: Geometric parameters of the lattice structure

Fig. 3: Developed section of the comical lattice shell

pattern of filament winding for lattice structures, carrying
axial compression loadings. In order to derive the
governing differential equations of the structure, first by
developing a section of the cone, the geometric equations
which have a direct effect on the stiffness matrix are
achieved (Fig. 3). Using geodesic relations, the following
equation for each point of the lattice struchure exists
(Kim, 2000):

psin @ = psin ¢, = C, = constant

(1)

Wherein T

sin o

and r is the radius of the cross section of the cone which
1s different at each point and ¢ 1s the angle between the
line passing through the apex of the cone and the axis of
symmetry of the cone. Taking derivation of Eq. 1 gives:

_ 4o
tan @

(2

where, A is the angle between the two helical ribs of
Fig. 3 and is found here:
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Geometrical design and finite element analysis of the
conical lattice structure 1s performed with the assumption
that the circular ribs are located between the intersection
of the helical ribs. Considering the geometry of Fig. 3, the
following equation is achieved:

Y= %‘”(HE -1 S

Geodesic angle at the smaller cross-section (@,) 1s
computed as follows:

9, = tan'{

And also, the geodesic angle at the bigger cross-
section (@,) 1s equal to:

Py siny
Pr COSY-P,

(5)

¢== @, 1 (6)
Variations of p versus ¢ are achieved by this

equation:

cos

9

dp=-C do

0 . 2
s @

Vertical space between circular and helical ribs for a
cell at each row 18 derived from the following equations:

a, =2a_sing (8)
Fial A\pdp
(ac )i,1+l == pxq)”l (9)
2dg
P

In Eq. 9, 1 ndicates the number of ribs. The minus
sign i Eq. 9 shows that the axis of the system of
coordinate system is located on the smaller cross-section.
Stiffness properties of one cell which has a repeating
pattern 18 the representative of the total repeating section.
The orthotropic properties achieved for annular bodies 1s
along the axial direction. For example for the cylindrical
structure, stiffness along the axial direction is equal to:

= A
EX_
L

where, A = 2nRH 1s the cross-section of the structure.
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E, and E, are the moduli of elasticity of helical and
circular ribs, respectively. Equation 10 1s directly derived
from theory, formulation and assumptions which are
related to the stiffness of the layer and the properties of
fibers. Also, properties of the equal stiffness along the
axial direction are derived from Eq. 11 (Kim, 2000):

)

q, used in Eq. 11 are the components of the stiffness
matrix Q and as it is seen, they depend upon the angle of
helical ribs, width of the ribs and the distance between
helical and circular ribs. The critical buckling axial load for

91:9:; 'q212
93z

[ (11)

H

comical shell 1s given by Wemgarten ef al. (1965):

2RE.t?

\/3(1—\:2)

According to Eq. 12, the critical buckling axial load for
conical shells 1s the same as that of cylindrical shells with
this difference that the angle for half-apex of the cone is

cos’a

cylee

(12)

also effective in the critical load. By comparison of the
experimental, analytical and finite element analysis, it is
found out that in order for the analytical result to have an
acceptable answer, a buckling correction factor of C must
be multiplied with it. Eventually by applying the
buckling correction factor, the critical buckling load of
the conical shell is equal to:

(13)

According to Weingarten et al. (1965), the magnitude
of parameter C depends on the angle of the cone's
mclination The correction factor of C for a cone having
the apex angle of 10 up to 75° is equal to 0.33. At a range
C 1

outside these angles, derived according to

experimental test.
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FINITE ELEMENT MODEL

Regarding the fact that these structures camnot be
transformed 1nto smaller samples, in order to determine the
mechanical specification of the structure, one can only
use the possible solution of experimental test. Numerical
analysis of the lattice structure 1s performed using
Timoshenko's beam element and the shell's element as 1t
is seen in Fig. 4. Generally, considering the situation that
major loads applied to the lattice structure are axial loads,
therefore buckling is the most important parameter in
strength evaluation of these structures. Choosing of the
beam element 1s described in reference (Morozov ef al.,
2011). Circular and circumferential ribs of the lattice
structure are completely bonded to each other at the
intersection points. The distance between circular and
helical ribs from each other is achieved, considering the
governing relations.

In order to design the winding pattern of the fibers,
1t 18 necessary to derive the geodesic angles of the helical
ribs in big and small cross-sections and the height
location of the conical structure should be known. For the
design of conical lattice structure and regarding Eq. 6, 7
and 10 the total dimensions mecluding height, bigger and
smaller cross-sections and the apex angle must be
determined. By this explanation, big and small diameters
of the cone are 2500 and 1250 mm, respectively and the
apex angle 15 34.7°. Now, regarding the geometric
specification stated, geodesic angle variations at different
height locations sand different number of circular ribs is
derived. Considering the model at the earlier study,
geodesic angle variations at the bigger and smaller
cross-sections with the increase of the height of the cone
and variations of the number of circular ribs are shown in
Fig. 5 and 6, respectively. As it is seen with the increase

YA

4

Fig. 4. A schematic of the beam element used m finite
element analysis
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Fig. 6: Variation of @, with increase of py/p, (& = 34.7°)

of the height of the cone, geodesic angles are non-linearly
decreasing. Also, with the ncrease of the number of
circumferential ribs at the same geometric conditions,
geodesic angles at each section are reduced. Results
show that by mcreasing the mumber of circumferential
ribs, variations of the geodesic angle at the bigger section
are reducing with a more inclination, compared to the
Regarding the total geometric
specifications of the conical structure, geodesic angle can
be achieved at the bigger and smaller cross-sections for
a certain number of helical and circular ribs from the
diagrams of Fig. 5 and 6. For example for the conical lattice
structure with 10 circular ribs and the ratio pg/p. = 2 of

smaller section.

geodesic angle at the bigger and smaller cross-sections
are 1598 and 33.44, respectively. Also, variations of

439

2. {degrec)

Fig. 7: Variation of A with the increase of the number of
helical ribs

Fig. 8 Finite element model of the lattice conical shell,
made by ABAQUS Software

A with the increase of the number of helical ribs is
shown in Fig. 7. The Fimte Element Model with total
specifications and geodesic angle is shown in Fig. 8.

VERIFICATION

Finite element model of the lattice conical shell which
has undergone buckling analysis under axial and bending
loadings in reference (Morozov et al., 2011) is used here
and buckling analysis is performed on it using ABAQUS
Software and Timoshenko's beam element. Geometric
specifications and the materials used in the finite
element analysis are chosen according to reference
(Morozov et al., 2011). A schematic of the finite element
analysis of the lattice conical shell with the defined
geometric specifications is shown in Fig. 9. Critical loads
here are in Newton and for better display of the
deformation of the structure, the aspect ratio of 40 1s
applied.

Results presented in Table 1 show that the results
achieved from the numerical finite element solution and
the analytical results are of high accuracy. Regarding the
verification performed in the following on the lattice
conical and ecylindrical structures with certain geometrical
specifications and the equations stated earlier, weight
optimization of the structure 1s performed.
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Model: Eigen value = 15.039
Primary var: U, magnitude

Fig. 9: Derivation of the critical buckling loading using
finite element method th =b =4 mm, ¢ = 5°)

Table 1: Comparison of the results of Morozov ef @l (2011) with the
results of anatytical analysis and the numerical analysis presented
here

MNumerical analysis

h=2mm h=4mm h=8mm

Analytical analysis b=8mm b =4 mm b=2mm

Morozov et af. (2011) 13.863 34416 44.334

ABAQUS 15.030 33.831 49.112

Analytical 15.060 36216 47.997
RESULTS AND DISCUSSION

Critical buckling load in structures depends upon
stacking sequence of the ribs, angle of helical ribs,
cross-section of the dribs, etc. Later in this study, results
of variations of axial loading under clamped support
conditions are investigated. Geometric specifications of
the lattice comcal shell are summarized in Table 2 with
regards to Fig. 5 and 6. Also, the properties of materials
used in the lattice conical shell are included m Table 3.

According to the diagram of Fig. 10, analytical results
show that by mcreasing the a/aratio, critical buckling
load increases.
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Table 2: Geometric parameters of the lattice conical shell studied

by Gmm)y b, (mm)  H (mim) o3 oty 1y 1,
5.75 4 18 33.4 15.98 53 10
Table 3: Properties of the materials used in the lattice conical shell
m, (kgm™) E (GPa) Oum (kgm™) (MPa) E, (GPa)
1410 64 1450 350 80
2.00E+07
1.80E+07
g 1.60E+07 -
& 1.40E+07
1.20E+07 4
1.00E+07 T T T T 1
0.5 0.6 0.7 0.8 0.9 1
ala,

Fig. 10: Variation of buckling load versus increase of a /a,
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Fig. 12: Vanation of critical buckling load versus mcrease
of a,/b, ratio

Also, with the increase of a /b, ratio, critical buckling
load decreases (Fig. 11). Also, variations of the critical
buckling load by increasing the ratio, non-linearly
decreases (Fig. 12). In Fig. 13, variation of the critical
buckling load versus increase of thickness has been
shown for two states of analytical and Finite Element
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Fig. 13: Vanation of critical buckling load versus mcrease of thickness of circular and helical ribs
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Fig. 14: A schematic of the first mode of buckling for the buckling of lattice comcal shell under axial loading versus

thickness variation of the rib (width = 5.75 mm)

Methods. Results indicate that by increasing the
thickness of the ribs of lattice shell, the critical buckling
load of the structure and non-linearly increases.
Regarding the diagram of Fig. 13, it is realized that
with the increase of the thickness of the rib (approximately
20 mm), the beam element does not possess high accuracy
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in the convergence of the results of analytical and
numerical analysis (Fig. 14). Also with the increase of the
width of helical and circular ribs, critical buckling load
increases non-linearly (Fig. 15).

Regarding the results presented, one can derive the
critical axial load with a good accuracy using numerical
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Fig. 16: First mode of buckling for the lattice conical shell under axial loading versus width variation of the rib

(Thickness = 18 mm)

Finite Element Method and Analytical Method. A
schematic of the first up to sixth modes of buckling of the
lattice conical structure, under axial loading is shown in
Fig. 16.

CONCLUSION

The study show that design of a lattice conical
shell, requires considering different parameters. These
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parameters are independently chosen by the designer or
are dependent. For buckling analysis of the lattice conical
structure under axial loading, the equal stiffness of the
shell in the axial, circumferential and through the
thickness directions should be determmed. Stiffness
matrix of the lattice structure, besides the mechanical
properties of helical and circular directions, depends upon
the geometry of the cells of the lattice structure and also
the angle of the helical ribs at different points of the
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height. Tn buckling analysis of the lattice conical shell
under axial loading, the following results are achieved:

By increasing the a /a, ratio, the critical buckling load
mereases

By increasing the a /b, ratio, the critical buckling load
decreases

By mcreasing the a,/by, ratio, the critical buckling load
decreases

By mcreasing the thickness of the circular and helical
ribs, the critical buckling load increases non-linearly
By mcreasing the width of the circular and helical
ribs, the critical axial loading increases
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