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Abstract: Using a framework of the radiation approximation followed by a two-term perturbation expansion for

cosmic ray transport in the spherical polar coordinates (r, 08, @) researchers identify the effect of cosmic ray
radiation on shock dominated transport. When the buoyancy parameter F, is negligible, researchers find that
the cosmic ray density at shock boundary (B,) decreases with increasing temperature. It is also observed that

the vanation of radiation parameter N in cosmic ray transport has no significant effect n the temperature
distribution. Thus, even when radiation is significant, it does not really modify the temperature within the

cosmic ray region. However, for mcreases in the density at shock boundaries say (En), the temperature

distribution decreases.
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INTRODUCTION

The radiation mechanism of cosmic ray shocks
including the transport of cosmic ray is a question of
has
known that cosmic rays contribute a viscosity to the
collisionless plasma in which they propagate
(Williams and Jokipii, 1993; Trotta et al, 2011). This
15 the result of the acceleration of particles in shear

common interest m astrophysics. It been

geometries m the flud flow. It remains to explore the
effect of radiation at cosmic ray dynamics. Cosmic ray
energy also reservoir suffers some loss processes by
way of scattering and particle decay (Pfrommer et al.,
2008).

In the present study, researchers employ a two fluid
formalism for cosmic ray shocks (Drury and Volk, 1981;
Wagner et al., 2006) to include the full cosmic ray
pressure tensor for small buoyancy parameter. The special
case of a cold background fluid with negligible pressure
15 also comsidered mn this model. Researchers start by
considering the mathematical formulaton of the
problem for a curvilinear shock (spherical) with no
average magnetic field.

The case of the mfluence of magnetic field on the
effect of radiation at cosmic ray shocks 1s deferred to later
study. The mathematical formulation is presented in
non-dimensional form followed by a two term perturbation
expansion.

MATHEMATICAL FORMULATION

The following 15 within the two-fhud (the cold
background plasma and the cosmic rays) framework. The
background plasma contributes mass, momentum and
flow energy to the system. The cosmic rays dominate the
internal energy and pressure in the spherical coordmate
systermn.

The imner sphere cosmic ray radius 1, 1is
maintained at temperature T, and rotates with angular
velocity w. The outer cold background plasma is at
temperature T .

Researchers assume that the temperatures T, 1
are large enough for radiative transfer to be significant,
thus if (v, v, ') and (¢, qg, 0) are the velocity and
radiative flux components, respectively in the spherical
polar coordinates (', @', z) then considering a time
dependent flow with the equations of motion referenced
to the shock frame, the mass, momentum and energy
equations gives:
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The cosmic ray energy density is defined as:

p:4nj(,/p2c2 +mict.m,c’ )ﬁ)zdp

Where:
m, = The particle rest mass
m = The relativistic mass measured in the frame of the

fluid

The momentum P 15 measured relative to the fluid
frame and ¢ is the speed of light, the integrals are over the
isotropic part of the cosmic ray distribution function.
Researchers define:
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TWO TERM PERTURBATION
EXPANSION SOLUTION

First, researchers take the boundary conditions for:

r=1 (4a)
u=0 (4b)
2-Tsmm_ (18 a(vY 15(aY' E [110
v= e D I e I ] B —
r 16 "|rédp or\r 32\28) M, | &1
(4e)
2-a7m 188 5 (Y 1
w=Qsinp-————F, ————| — Wby ——
128 bor 48\ 2 ?
(4d)
2y 1w, ot 0 (4e)
T rép T
For a simple case when:
r=R
2-T'5m afw (5)
w=——+—"Er—|—
I 16 o\ r

where, R is the spherical radius of the outer plasma.
Researchers introduce the following non-dimensional
quantities:

T 1
=—,(uv,w)=—(Fu,w
T . (0, v, w) Fr(ruw)
TT
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N = 46T 30,C)
Where:
) = The gyro-frequency of the cosmic ray particles

n the average background radiation field
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¢ando = The absorption coefficient and Stefan-
Boltzmarnn constant
T'andl = The reflecton and accommodation

coefficient on the cosmic ray dominant

shock

The problem is highly non-linear and thus not
amenable to easy analytical treatment. Asymptotic
approximation is then invoked For a simplified cosmic ray
dominant shock in which there is a small buoyancy factor
F,, for w researchers write:

o= (r)sin p+Faol (rp)+...
for P and 6, researchers put:
P=P"(r)+EP" (rg)+.. (7)
while for u and v researchers set:
U=Fu"(r,¢)+...

Substituting Eq. 7 mto the governing equations,
researchers have the sequence of approximations 0 (1):
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On 0 (F,) with u®, p™, 6% = u%r), u,"(1) and:
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Thus, within the two fluid (the cold background
plasma sphere and the cosmic rays) framework, the
velocity and temperature be conserved across the shock,
this leads to the equations:

(0 O] (0 (1) _ 4.0
{—dw a4 &y, 20 VEOJ = %i{rzrm " J
dr T T r dr

(15)

[de(D)JUPJ_%i r{e(ﬂ) a0, do® e@] _
dr o dr dr dr (16)

2a0an_ 1 d o my, 2 0
re & rzdr(rqr )+rqq’

And the cosmic ray pressure with one index fixed:

1
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©

o™ and p® are the zero and non-zero components of
cosmic ray energy density. Researchers define:
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The Eq. 8-24 allow us to obtain solutions subject to
boundary conditions (Eq. 25). By virtue of the two fluids
(the cold background plasma and cosmic rays) framework,
the first set of Eq. 8 give:

and therefore:

Next the equation mvolving temperature in Eq. 8
could be integrated twice to give:

%GWJ N =A@ 1o (27)

If researchers put:

And:

then Eq. 27 with the temperature boundary condition in
Eq. 11 furmish the four equations:
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for the four unknown an appeal to Newton-Raphson
algorithm readily gives a solution to these non-linear
equations. The equation for the velocity could also be
reduced to:

(Ym)fﬁ)z(z)

The integral mvolved n Eq. 29a closed form 1f O 18
adapted as independent variable. Thus:
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By virtue of Eq. 27, the velocity boundary conditions
i Eq. 9 and 10 reduce to:
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Equation 34 and 35 are two linear simultaneous
equations for the unknown Y® and k™. Finally, from the
pressure boundary conditions in Eq. 25 the shock
pressure (between the two flud approximation) can be
obtained as:
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The solution of order O (1) problem is now completed.
HIGHER APPROXIMATE SOLUTIONS

Researchers know that:

ag® -A a7
dr (6" ane”)
from which follows:
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dr' r(0+4n0 ™) o (6 4Ne(”)3)3
While from (Eq. 33) researchers obtain:
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and in virtue of Hqg. 27 the above derivatives are
expressible in terms of r. Furthermore using Eq. 26 and
neglecting the shock pressure, the zero order buoyancy
factor O (Fr) may then be expressed in compact form as:
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It is now convenienttoputr, = r+Ar, j= 1,2, . =
1 and r; = R. For the dependent variables researchers set
then all the basic approximations and their derivatives
Eq. 33-40 are expressible m terms of j. In the current
approximation, researchers discretise by replacing
derivatives by fimte differences employmng central
difference as used by Bestman et al (1993). In the
boundary conditions it is expedient to replace derivative
i by an expression mvolving the single unknown
obtained easily in Eq. 40; since u,"(0) = u,(j:

RESULTS AND DISCUSSION

Researchers have illustrated the effect of cosmic-ray
radiation on the structure of cosmic-ray modified shocks
following the two fluid (the cold background plasma and
cosmic-ray) framework. The basic approximation for small
buoyancy parameter, though non-linear was mtegrated
i a closed from. However, the arbitrary constants of
integration in the temperature field as well as the
temperature jumps at the spheres swface which satisfies
the non-linear algebraic equations which are easily solved
by the Newton-Raphson Method. Of interest is that the
cosmic ray radiation thickens the shock if buoyancy
factor O (F,) 1s negligible. This is in agreement with the
results obtained by Wagner et al. (2006). In the absence
of a cold dense layer the post-shock produces no sharp
boundary with the downstream flow.

In the quantitative discussion, researchers take I =
1.4 (cosmic rays), F, = 0.1, -R = 2 and { = 1 which are
varied when equations are solved numerically. The results
of the temperature distribution are shown in Fig. 1 for
velocity profiles 1. In Fig. 1, researchers observe that
variation in the cosmic ray radiation parameter (IN) has no
significant effect in the temperature distribution.
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Temperature ()

Radiation density (r)

Fig. 1: Relationship between radiation density and
temperature distribution

CONCLUSION

The result of study shows that once radiation is
significant, the amount of radiation does not really
modify the temperature within the cosmic ray-dominated

shock.
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