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Abstract: Tn pH reactors, determination and control of pH is a common problem concerning chemical-based

industrial processes due to the non-linearity observed in the titration curve. The researchers mtroduced a
modified multiregional Fuzzy-Based Control System to overcome the complexity of precise control of pH. In

order to compensate for the experimental inaccuracies i measurements of pH in-situ values; an observer for
pH is implemented using Adaptive Neuro-Fuzzy Inference System (ANFIS). The pH control approach and

ANFIS-based observer are mtegrated in a nonlinear cascade structure to ensure the dynamic modifications and

stability enhancement. The cascade structure 1s designed using a multiregional fuzzy PI controller in the master
loop and a Wiener Model-based fuzzy proportional controller as a slave one. The Multiregional Fuzzy Cascade

Control (MFCC) structure 1s developed to implicate the three main regions of the titration curve.
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INTRODUCTION

pH control had always drawn attention of chemical
engineers because of its significance in various fields as
medicine where the effect of pH on the enzymes and
blood is intensely investigated and the industry which is
concerned with manufacturing of textile dyes and bleach
products.

Furthermore, several studies had enriched this
research area as environmentalists concems regarding
treating waste water and the acidic ram and recently the
enormous interest of the nuclear scientists to gain a safe
monitoring of the pH in the nuclear reactors and resulted
materials (Luyben, 1989).

In such systems, a fundamental concern is the vast
variation of pH encountered with titration process;
this implies that a small change mn the composition
specifications in the process could lead to great
divergence in pH values which endanger the stability
of the system. This arouses curiosity of researchers
and engmeers who mvestigated the development of
empirical models
techniques to be

and proposed various control
applied with industrial pH
processes.

Recent studies
Model-based controller considered a measurement delay

on the application of Wiener

and proposed an Adaptive Control System for pH control
using neural networks. It was introduced as a cascade
structure to maintain pH at 7 when the titration curve
undergoes large variations. The Cascade System congsists
of an imner loop which mcludes a Typical Wiener Model
with a proportional controller while the outer loop is a
conventional feedback system with a Proportional and
Integral (PT) controller.

This model had overcome the large oscillations
complication resulted from the switching over titration
curve from weak to strong acid and vice versa,
nevertheless it has some drawbacks with large varations
of pH.

Therefore, this study proposes a Multiregional
Fuzzy-Based Cascade Control System; this approach is
accomplished by sectioning the titration curve into three
main regions in order to encounter the large varations of
pH by ensuring stability improvements.

Evaluation of pH as a controlled variable 1s
achieved using an adaptive neuro-fuzzy based pH
validated within
feedback loop of the proposed control structure as
shown in Fig. 1. The models are designed and verified
numerically with MATLAB/SIMULINK to obtan the
optimum design for the neutralization process under
study.

observer  which 1s the master
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Fig. 1: Multiregional  fuzzy-based cascade control
structure where pH* is the reference value of pH,
DV 1s the Disturbance Varable affecting the
control signal, MV is the Manipulated Variable of
the system (flow of base L/mm), PV is the
measwred Process Variable (pH) and pH., 1s the

estimated pH by the proposed ANFIS ohserver
INVERSE pH MODELING

The titration curve can describe the nonlinearity of
the pH process as shown in Fig. 2. The curve starts with
a linear behavior at the mitial region afterwards, the
nonlinear behavior is initiated in the second region where
a slight difference in volume or flow rate of the base will
lead to a great variation of pH values.

The sudden variation of the pH in the second region
of the titration curve could endanger the stability of the
control system which is designed to maintain pH at a
reference point. On the other hand, altemating from weak
to strong acid or vice versa could cause instability of the
process.

This 18 due to the huge variations of the steady state
gain endured in the switching process, (the gain of the
strong acid at steady state is 350 times the weak acid gain)
as noted by TLuyben (1989), Magada (2008) and
Ogunnaik and Ray (1994).

Obtaining the titration curve for a weak/strong acid -
strong base is a challenging procedure since, the titration
curve consists of several regions that behave m a
different manner according to the [H'] in the solution. The
titration operation 1s shown m Fig. 3. Equation 1 and 2
illustrates the volumetric concentration changes for acid
and base streams:
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Fig. 2: Titration curves for strong/weal acid-strong base
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Fig. 3: pH reactor schematic

Where:

¢ andc, = The concentration values of acid and base
in the outlet stream

Q,and Q, = The volumetric flow rates of acid and base
entering the reactor

v = The reactor volume

k = A constant indicates the strength of acid

entering the reactor and given as:
For strong acid-strong base:

k=1 (4
For weak acid:

R TESTE Y ®

where, K, is the acid dissociation constant:

pK, = -log;; (K,)
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at steady state condition where both derivatives of ¢, ¢,
1s substituted as zero. By solving Eq. 1 and 2 for ¢, ¢,
values and substitute it in Eq. 3 we will get:

R, QG ggm gy )
Q.+Q, Q+¢,
From Eq. 6, Q, could be obtained, simply as:
_ -pH pH-14
Qb :Q I(CEl 10 +10 (7)

fg, F107FF o0

Solve for the titration curve in the form of pH = £ (Q):

_[ kQ.C, QG }

Q. +Q, Q. +Q,

pH =g, {%_ﬁf—mom)(—l)
Q+Q Q. +Q
2(107")

(8)

Equation 8 evaluates pH values according to the
variation of the Q, and consequently produces the
titration curve for strong/weak acid-strong base. For the
strong acid system, the titration process is sumpler
because of large dissociation constant which is
responsible for the dissociation of the entire amount of
acid into ions to be consumed by the disassociated
base ions to form the simple molecules of salt and
water.

Assuming that: <, = 0.02 [mol L™'] for weak and
strong acid, C,=0.025[molL™"],Q,=1.25[L min~'] and
K., = o for strong acid. The small dissociation constant of
the weak acid prevents the base from consuming an equal
amount from the weak acid due to incomplete
disassociation of the weak acid mto an acid 1ons (base
conjugate) and hydrogen 1ons.

The titration curve of the wealk acid system is
obtamed by substituting (K,) of the weak acid
(K, = 1.83x107"). Figure 2 shows the obtained titration
curves of Eq. 8 for weak/strong acid-strong base.

Figure 2 shows the difference m titration curve
between wealk acid system and a strong acid system. It
worth to mention that the weak acid titration curve 1s
smoother as shown in this figure, this is due to what is
called as the Buffering effect (Parekh et al., 1994
Pishvaie and Shahrokhi, 2006).
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DESIGN OF ADAPTIVE
NEURO-FUZZY pH OBSERVER

The ANFIS cbserver is an empirical model designed
to replace the pH meter. The designed ANFIS Model
attempts to match nonlinearities and parametric
uncertainties encountered with such dynamic process
(Pishvaie and Shahrokln, 2006; Qm and Borders, 1994,
Shinskey, 1974) and it has been proposed also to
overcome the typical difficulties faced with using pH
meters i chemical plants as wiring  1ssues,
troubleshooting and maintenance of the system. The
proposed observer requires an evaluation of all variables
that might affect the pH.

The fuzzy inference process is implemented as a
generalized neural networlk which is then adjusted by
a combination of least squares estimation and
backpropagation algorithm (Vojtesek and Dostal, 2005;
Gulaian and Lane, 1990). The fuzzy rules and the range of
the membership functions are optimized to minimize the
output error between the output of the Fuzzy Model and
the input data. Figure 4 shows the architecture of the
implemented five-layer ANFIS System of Sugeno type
(Guner, 2003; Gupta et al, 2009). The first layer is the
input layer, the 2-input vectors are shown in Fig. 4; x,:Q,:
flow rate of base and x,:AD: temperate variation. The
correspending output of input x; at node (i) in Layer (1) is
O ;. Layer 1 containg k nodes for every input which

correspond to Bell Membership Functions (BMF)
according to:

O} =p, (x), i=1,2,..k,j=1,2 9
Where:
Ay Fuzzy sets describing the input
Waij (%) =  The degree of membership of a variable x, nto

the fuzzy set A, |

To calculate the firing strength of the mth rule (total
n rules) in Layer 2, w,, the rule output 1s equal to the
product of incoming inputs from Layer 1:

Op = w, = [ (X)) (10)
=1
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Fig. 4: Architecture of the Adaptive Newro-Fuzzy System
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i, j are defined in mth rule. The process continues to
Layer 3, the mth node computes the ratio of the mth rule’s

firing  strength to the sum of finng strength
(normalization):
3 Wy
O =W = o (11)
w

In Layer 4 each node in thus layer represents a rule; it
has adaptive nodes with corresponding functions:

Ofn:%mxf (12)

where, f, is a crisp variable of mth rule that describes
the output. The last Layer 5 has a single node which

computes the output (indentation loads) as the
summation of Layer 4 outputs:

of:Zmefm (13)

m=1

The wmnplemented leammng algorithms mvolve
unsupervised learning of the BMF (centers and widths)
followed by unsupervised learning of the rules
(calculation of rules and updates) and emror back
propagation for optimization of the membership functions
(the output and the error are fed back to Layer 2).
Different data sets were used to validate the accuracy of
the model.

The designed observer 1s validated experumentally to
determine pH values (as a process variable in the control
scheme) through measuring of Q, (as a manipulated
variable mn control scheme). To examme the designed
observer, the estimated pH values were compared with
experimental results to find the absolute average testing
error which was about 0.019 as shown in Fig. 5.

124 Training data:0 FIS output:*
111 (
104

*

o
81 *

Output

0 20 40 60 80 100 120 140 160 180 200

Index

Fig. 5: Observed pH values (o) Training data, (*) FIS
output. Scaling factor at x-axis is 0.01

Finally, the designed and validated observer is
employed in the feedback design of the control loop as
shown in Fig. 1.

MULTIREGIONAL FUZZY-BASED CASCADE
CONTROL STRUCTURE

The cascade control structure i1s very common in
chemical processes. The proposed multiregional fuzzy-
based cascade control structure shown in Fig. 1, consists
of two mam loops: the master loop (outer loop) where
multiregional fuzzy PI controller 1s used and the slave loop
(inner loop) where a Weiner Model-based fuzzy P
controller is implemented, these interacting loops work
together to obtain the optimal control over the process.

In the case of strong acid system, the nonlinear gain
of the process output will be canceled out with the
inversed function of the process (shown in Fig. 1 which
uses a constant K, of infinity for a strong acid) and
accordingly the process control 15 achieved within the
imner loop. Although, in a case of a weak acid system, the
process output gain will not be canceled out completely
with the inverse fumction and therefore, the residue will be
corrected within the outer loop. The proposed fuzzy
controller will overcome the nonlinearity of the titration
curve by partitioning the titration cwrve into three main
regions (Henson and Seborg, 1994). The multiregional
fuzzy controller will behave according to the determined
region.

The controller has three inputs and only one output
making the system as a Multi-Inputs Smgle-Output
System (MISO). The mputs are: the error signal e, the
error difference Ae and an Auxiliary Variable (AV) which
is control input that expresses the three regions of the
titration curve while the output is the actuating signal
expressing (AQ,). The membership functions of each
input and output is shown in Fig. 6.

The inputs of e and Ae consists of five triangular
membership functions ranging between -1 and 1 while the
third control input AV is expressed with three trapezoidal
membership functions. It’s representing the three regions
of the titration cwrve ranging between O and 13. The
output 1s more complicated than the mputs structure, 1t 1s
represented using twelve triangular membership functions
with seven main functions that is used to perform the
aggressive variations needed during control while the
other five functions used for the fine control actions, the
output’s membership finctions are ranging between
-1 and 1. The rules set of this controller are shown in
Table 1 and 2. The response of the multiregional controller
within the three regions of the titration curve and towards
the set point tracking is shown in Fig. 7 and 8.
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Fig. 6: Membership functions of mputs and outputs of
the multiregional fuzzy controller

Table 1: Rules set of multiregional fuzzy controller if AV is high or low for
linear regions with titration curve

e NL NS Z20 PS PL
NL PL PL PL PM 20
NS PL PL PM 20 NM
zo PM PM z0 NM NL
PS Ps 20 NM NL NL
PL PL NS NM NL NL

Table 2: Rules set of multiregional fuzzy controller if AV is medium for
highly nonlinear region

eihe NL NS 0 PS PL
NL PM PS Ppm Pps Zzo
NS Ppm Pps Pps Zzo Nns
20 Pps Pps Pps Nns Nns
PS Pps Zzo Zzo Nns Nnm
PL is) Nns Nnm NS NM

P = Positive; 1. = Large; M = Medium; 8 = Small, Z0 = Zero;
N = Negative

Figure 7 and & clearly show a superior performance of
the multiregional fuzzy-based cascade controller over
the titration process with minimal resulted errors. The
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Fig. 7: Performance of closed loop structure with
multiregional fuzzy controller in set point tracking;
a) for weak acid and b) for strong acid
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Fig. 8 Performance of control structure with multiregional

fuzzy controller mn the three regions of titration
curve; a) for weak acid and b) for strong acid
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proposed cascade control structure uses two fuzzy-based
controllers (in master and slave loops Fig. 1), each
behaves differently to obtain the improved response
shown in Fig. 8.

CONCLUSION

The troubles might be found with pH electrodes,
used for pH measurements have been resolved by
proposing an  ANFIS-based pH that if
umnplemented experimentally will optimize the size of overall
plant with cost reduction to meet the industrial enquiries.
And this 15 one of perspectives of the present research.

observer

The effectiveness of the proposed observer has been
ensured as well concluded when comparing Fig. 2 with
Fig. 5. On the control side of this study, the nonlinear
behavior exhibited by the pH process was tested using
nonlinear mtelligent-based cascade control. It proved to
be the best techmque that could be used with such
systems comparing with other nonlinear classical cascade
ones that suffering from problems of parameter tuning.
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