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Abstract: The equation of the fractionally nonlinear oscillator with strong quadratic damping force was
considered with generalized damping term to Caputo fractional derivatives. The order of the derivatives
considered for this problem was 0<v<1. At the lower end v = 0 the linearly damped harmonic oscillator and at
the upper end v = 1 a non-linearly damped harmomic oscillator or strong quadratic damping force were obtained.
The method of Laplace transformations were used to obtain the analytical solution. Eighteen roots were
obtained against the usual three for ordinary (1.e., damped, over damped and critically damped). Two solutions
were obtained for both positive and negative 8. For six of these cases it was shown that the frequency of
oscillation increases with increasing damping order before eventually falling to the limiting value given by the
ordinary damped oscillator equation. For the other six cases the behavior is as expected, the frequency of
oscillation decreases with increasing order of the derivative damping term.
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INTRODUCTION

The simple harmonic oscillator is one of the central
problems in physics, these systems of linear oscillator had
been considered by many standard text books and many
researchers this was due to their simplicity and existence
of an exact analytical solution which had been discussed
extensively but in reality the systems and damping are not
linear. Most of the time, the two kinds of oscillator with
damping are considered, either the system with nonlinear
elasticity and linear damping or the system with linear
elasticity and nonlinear damping.

The first group of the problem 15 widely discussed in
their papers Mickens (2002), Waluya and van Horssen
(2003), Andrianov and van Horssen (2006) and Pilipchuk
(2007) while the second group of the problems on
restriction to the smaller dampig were considered by
(Nayfeh and Mook, 1979) they applied the analytical
method of multiple scale for selving lightly damped
systems (Tunoshenko et al., 1974) gave an example of the
application of the methed of successive approximation for
solving a differential with a small square damping term
examined the same problem by modified the averaging
method for solving the equation. Andronov et al. (1981)
provided a qualitative analysis of the oscillator with
strong damping quadratic. The trajectories for various
mitial energy values were plotted m the phase plane by
Cveticarun (2004). The previously obtamed result by
Cveticanin (2009) was extended by Podlubny (1999) and
Burov and Barkai (2007, 2008) examined an equation with
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critical behaviour they a solution in terms of generalized
Mittang-Leffler functions. Nonlinear fractional oscillator
was studied numerical by (Zaslavsky ef al., 2006) he was
interested in chaotic behaviours believing that the careful
study of analytical solution to linearly fractional damped
equation will explamed better on properties of the
nonlmear equation and be used for direct application of
fractionally damped oscillation (Galucio et al., 2006,
Achar et al, 2004), Naber (2009) applied the Caputo
formula of fractional derivatives and Laplace transform of
the two formation of the fractional derivatives to
determine analytical solution and also applied the method
of nonfractional case and found out that there mne
distinet for fractionally damped equation as opposed to
three cases for nonfractional equation. In this study the
fractionally nonlinear oscillator with strong quadratic
damping force 1s consider. The mathematical model to the
systermns 1s given as:

X(1)+ 85 (1)[X(1)]+ 27X (1) =0 M

or¥{t) + (£8) X7 (11 AFX(t) =0

Whose order v+1 will be restricted to O<v<l. The
Caputo formulation of the fractional derivative will be
used. Tn particular the Caputo derivatives over the
Riemann-Liouville derivative for physical reason shall be
employed. Consider the Laplace transform of the two
formulations of the fractional derivative for O<tv<1.
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L(iLfo(t)J—s"F(s)—iL

L[;fo(t)} =Pl (),

DI (1)), o

The constant term arise from the Laplace transform of
the Caputo derivatives is just the mitial value of the
funection which is not in Riemann-Liouville derivative also
the constant arising from the Laplace has no physical
mterpretation therefore, the Caputo fractional will be more
for the physical problem.

THE NONFRACTIONAL CASE

Laplace transform method is applied to obtamn a
solution to the fractionally nonlinear oscillator with strong
quadratic damping force:

(1) + (+8)K({ )+ WX (x) =0 3)
Where:
dand A = Constant of real and positive
) = The damping force per unit mass
A = The restoring force per unit mass for both

case (the fractional and nonfractional

The following imitial conditions will be applied:
1 )

Applymng the Laplace transform to Eq. 3 together with
the initial conditions in Eq. 4 to obtain:

$"X(s) —sX(0) - X(0) +(£8)
(sX(s)-X(0))+ A"X(s) =0

(3)

_sxptx, +(28)x,

6
st (£8)s + A7 ©

X(s)

Equation 6 can be inverted by using a relevant table
but notwithstanding Eq. 6 can be inverted via the complex
mversion integral. The components m the s variable in
both terms are whole number. Thus, not a branch will be
cut in the contour and the Bromwich contour shall be
employed:

X(t)= ResiduefL_J‘G“X(s)ds (7)

27

Bromwich contour 1s known to begin from y-iec and
vertically to y+ee (where 7y is chosen so that the poles lie
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on the left of the vertical contour lines thus all poles will
be concentrated within the contour) and then travels to a
half circle (to the left, counter clockwise) back to y-1ee. For
this particular case there 1s no contribution from the
contour integral. The only contribution comes from the
residue. The residue is generated from the roots of the
quadratic equation:

(8)

X{(t)+8X(t)+A*X(x)=0

Three cases were obtained, =24, four unequal real
roots that are two negatives ¢ ,=-5z+4& -43?/2 and two
positives s, =3++5 —aa’ /2 10 = 22, four repeated real
roots that are both positive and negative:

LY
2

824, four complex roots whose real part are both positive
and negative:

_Brifan 8

s =
6,7
2

_ S+iyan’ -5

2

)

5,9

Compute the residue for case one gives:

hm 8—8
ReSidue = ( 1.2 )est a SXD . 2X1 + SXD 2
58, $°+ 3+ A 85+ 88+ A
lim(s—s B
Residue = (s —54) e[ — SX g : 2X1 SXUZ
528, 55 =85+ A g — 8+ A
9
() GS1t ( 8 ) eszt ( 8 )
X(t)=————(8.%. +%X +0X. |+ ——(8.X. + X, +0OX
25,48 T T g
esslt esat
X(t) B ﬂ(SBXD X 0 )+ ﬂ(sttxn +X _SXD)

3 4

(10)

Since, s; and s, are both negative the solution will
decay exponentially. This is called the over damped case.
Case two the poles 13 of order 2 and the residue 1s given

by:
{(F#k)ze“[ D an

Since, & = 28 the denominator can be factored the

Im 4

5X,Tx, T 8%,
s —tAds

st + 8 + A1

limait then becomes:

lim d
s —tAds

(eSt (sx %, + 2Ax, )) (12)
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X(t):Zkeﬂt(t(ka-#—xl)+xu) (13)

This 1s called the critically damped case. Case three
is computed in the same way as case one since the poles
are complex the exponential function can be expressed as
sine and cosine including an overall exponential damping
factor:

(2}(1 +(i8)xu)

X{t)=e | x cos(ft)+ sin{ft) (14)

where, & =18/2 and p=+2715 /2 the present of damping
was notice to cause the effective angular velocity to be
smaller than the undamped angular frequency in other
words oscillation goes slower which might be expect if
there were damping to impede the motion. This 1s referred
to as the under damped case by comparison case one and
case two can be viewed as having zero frequency or an
infinite period.

THE FRACTONAL CASE

Consider Eq. 1 m this case the & has the unit of time
raise to the power v-3. Hence, the over all units of the
second term remain the same as in Eq. 4. The case of shall
be considered O<v<1 and 1 <v<2 . The Laplace transform
of Eq. 1 1s:

$'X(s) —sx, +x, +(£3). s
(s""X(s) —s"x, )(£)A*X(s) =0

%+, + (£8)s"x,
s?+ (£8)s" + 00

X(s)= (16)

Equation 16 1s mverted using the contour integral due
to the fractional exponents on the complex variable s a
branch cut 15 needed on the negative real axis. Hence,
Hankel contour is applied.

This contour begins at y-i= and vertically to y+ie
(where v is chosen so that the poles lie on the left of the
vertical contour lines, thus all poles will be concentrated
within the contour) and then travels to a quarter circle (to
the left, counter clockwise) back to y-iee.

For this particular case there 1s no contribution from
the contour integral. The only contribution comes from
the residue. To find the poles quadratic equation of this
for needs to be solved:

(17)

85"+ A =0
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For which an arbitrary v is not a trivial problem. To
determine the solution and the number of solutions let
s = re’® then Eq. 17 splits into 2 Equation a real and

imaginary part:

r® cos(2¢) £ & cos((v + 1)¢) +A7=0
r*sin{29)+ &' Sin((v - 1)¢) =0

(18)

From the Eq. 17 the question that comes to the mind
15 that would there be solution on the positive axis the
answer is no since ¢ = 0 the first equation of (18) would
be the sum of the three positive nonzero terms which
would never is zero. Similarly would there be a solution on
negative real axis, the answer is no in this case ¢ = 1 the
second term of the second equation of (18) would never
be zero. Using similar argument it can be shown that there
no solutions in both positive and negative of the
imagnary axes. [t can also been shown that no solutions
are in the right half plane since O<v<1 (both terms of the
second would always be positive). Assume that there
solution then they should be in pairs, complex conjugate
with w/2<¢d<n and -w<p<-n/2. In an attempt to find a
solution the second equation in Eq. 18 would be solve
first to obtain a value for r and substitute m the first:

oo
{ )q))J cos{ 20} +

(

—(irS)sin((v +1

sin(2¢)
a){
(19)

The negative sign, the negative and positive sign and
the fractional exponent in Eq. 19 may be the worried of the
reader nevertheless the restriction on the angular range
n/2<p<n shall be considered since sin (2¢) is always
negative, so the root of the argument will always be
positive. Assign values for v, & and A the Eq. 19 will be
seen difficult to solve for ¢p. Equation 19 can be simplified
to a likely preferred form.

—(iS)sin((v +1
sin(2¢)

+

e
)d))} cos((v+1)cj))+lz:0

-
sin((l— v)q)) =

Ao
(£8)/—

(sin((v+1)(1)))v+1
(sin(20))

Here there is a need to get a value of ¢ that satisfies
Eq. 20. For this to be true that means that sin{(1-v)d) =0
must be positive and this can only occur on the restricted
domam T/ 2<¢=m/(1-v). Based on the restriction on the
domain the ¢ is chosen so that the left hand of Eq. 20 is
large or small or vamish. Also no matter the values assign
to 8, A and v the value of ¢ can be find the Eq. 20:
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lim sin{(v + e Yo
M Sin((l_v)q,):oo

¢_>E (sin(2¢)) ) @1
lim . w4l W -w
(sm((v +1)¢))
b — sin[(1-v]¢)=
¢%(177V) (sin(2¢)) ((1=v)e) =0

Since, the left hand side of Eq. 20 is continuous and
two limits were obtained m Eq. 21 this gives an assurance
that at least one solution to Eq. 20 could be obtained
therefore there would be at least two poles for the
calculation of the residue. To show that Eq. 20 has only
one solution then it must be shown that the left hand side
of Eq. 20 decreases monotonically in ¢ over the restricted
domain, hence only two poles mn residue calculation. For
Eq. 20 to decrease monotonically then the derivatives with
respect to ¢ must be negative:

1
1-w

Kl (sin((v -#—1)(])))‘1+1

9¢ (sin(2¢))2 Sm((liv)q)) <0 (22)

After some algebra and neglecting all the factors that
are always positive then the derivative is:

(v+1)zsin2(2¢)—4(v+1)sin(2¢)sm((v+1) ) (23)
cos((l—v)¢)+4sin2((v+1)¢):0

Followmg the restricion on the doman
sin((1+v) =0, sin(2¢)<0 and cos((1-v)dp)<1. Equation 23
reduces to:

(v+1)"sin® (29) - 4(v +1)sin(29) (24)
0

sin((v + 1)¢)+ 4sin’ ((v + 1)(])) >

Equation 24 is then written as a perfect square to
prove the assertion on Eq. 22:

((v+1)sin(2¢)—2sin((v+l)¢))2>0 (25)

On the restricted domam hence, the left hand of
Eqg. 20 decreases monotonically with - as the upper
bound and O the lower bound. Consequently only two
poles shall be obtained for the residue calculation and this
15 the complex conmjugate of each other. From the
fractionally damped equation repeated roots are not
possible the repeated roots can only occur when the order
of the derivative 13 zero. The graphical representation of
the location 1s shown mn this study.

401

Now the pole solution for Eq. 1 can be generated by
denote the two poles as s,, = 0+ = re'*. Where 6 and B
are obtained from r and 6 values that satisfy Hq. 20
r=J# +p¢ andtan (¢p) = 0/p here 6 is negative this imply
that both solutions are m the second and the third

quadrants and s; 1s the complex comugates of s,
Remember that 0 is taken the place of (=8)/2 from the
nonfractional case. The poles of order one and the residue

is given by:
e [

et

84X, X, X, (18)s,
8,0 H{E8)s, "+

sx+x++85x
s +(£8) "“+

lim{s—s,) ,

s —)Sﬁ

lm{s—s,) ,

558,
[ J {s X, + X { 8)"}
= +e%
(+8) v+1+;\‘2
(26)

s; was substituted for s, and Eq. 26 after some algebra
reduces to:

Residue=

;\'2
X, TX, + +63x
s +(£8) "“+7L2

]

F:X1(2r005(¢)+(i8)(v+1)r" cos(vq))) (27)

For the contour mtegral the only contribution comes
from the path along the positive real axis:

(R}c1 - xp)sin{(v+1)n )

+ ] R2 +7L2 sm
(— J‘ FRMAR (28)
T (R2+)L2) 2( )Rv+1 (Rz +}\.2)
cos( {(v+1)m ) ( 18) V“)2

The solution to Eq. 1 is Eq. 28 subtracted from Eq. 27
which may be seems to be complicated but the solution in
the general form shows that:

Ee™ cos(ft) + Fe™ sin(pt) — decay function (29)

if v goes to zero or one then the decay function in Eq. 28
goes to zero in other words (1) goes to its nonfractional
limits and the decay function varnish.

The oscillation frequency: Consider the frequency of the
oscillation component of the solution, ¢ = Im (s,) to know
how the frequency equation changes with the order of the
fractional damping or derivative we set v to zero a linear
damped oscillator frequency 1s obtained with three case
as discussed in under damped, critically damped and over
damped so the frequency is nonzero that is:
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A —(£8)
0=0 (£8)22h, o= () . (£8) <2
(30)
When v 18 set to be one:
A
0= (32)
1+(£8)

For O<v<1 this shows that there will always be a
nonzero frequency:

)
2 1+ (E3)

In the nonfractional case increasing (+8) causes the
frequency of oscillation to become smaller, monotonically,
until the critical cases are reached and the oscillation
period becomes infinite (these are the critical and over-
damped cases). In the fractional case the frequency of
oscillation, ¢ = Tm (s,), now depends on the order of the
derivative, v as well as (£8) and A. To determine the o
dependence & on these three parameters consider s to be
a function of v, on O<v<1 defined by:

s+ ()8 + A =0 (32)

for fixed values of (+8) and A (both being positive). Let us
restrict our attention to the upper half plane for s. As such
s will be one to one on O<v<l. Due to the fractional
exponent causing a branch cut on the negative real axis s
will not be one to one at v = 1. Now consider the
derivative of Eq. 32 with respect to v and isolate ds/dv
(remember, (£0) and A are being held fixed):

ds _ —(£8)s" " In(s)s* (33)
dv st (£8)(v+1)s"™
The imaginary part of this equation is:
9 il 3 (34)
d¢ dv

Specifically, consider this equation at v = O

(52 +7u2)]11(s)s2

=i _(#8)(in((z8)+ %))
v=0 28> —(V+1)(SZ +7\,2) v=0

4= 10
(35)

d¢

dv

This gives three initial slopes for the rate of change
of o withrespect to v 171 +(18)<1. The frequency initially
increases with increasing damping order As\fi+(:8)=1.
The frequency imitially 1s not changing with mcreasing
damping order aJfi+(£8)»>1. The frequency initially
decreases with increasing damping order.

This 1s not entirely what might have been expected.
In the first case the oscillation frequency increases and
decreases in some cases. Hence, there will be some values
of v for which the fractional damping will cause the
oscillations to go faster than the linear damped oscillator
(the damping will still cause the amplitude to decrease).
Each of the above six cases can become any of the three
Nonfractionally damped cases by letting v—0 Eq. 10-12.
Hence, there are mine cases for the linear fractionally
damped oscillator.

There are some graphs of solutions to the imaginary
part of Eq. 32 (the oscillation frequency) for various
values of v, d and A. In all six graphs the oscillation
frequency is on the vertical axis and the order of the
derivative is on the horizontal axis. The six graphs for
each case correspond to what would be under-damped,
critically damped and over-damped for a strong damped
oscillator with whole order derivatives.

Figure 1 is a representative graph of case one
Ayl (+8)»1. The blue graph is for & = 4 =1 the red graph
1s for & =2, A =1 and the green graph s for 6=3, A =1.
The oscillation frequency decreases for different values
of 8.

Figure 2 13 a representative graph from case two
afir8)=1 a flat start. The blue graph is for
8-2(v2-1), - 8] . theredgraphis for 8 =1/2, A=1/2and

the green graph is for § = 15/16, A = 1/4.

Oscillation frequency against order of derivative

Oscillation frequency
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Fig. 1: The representative graph of case one A/ fi+(+8)>1
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079 Oscillation frequency against order of derivatives
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Fig. 2: The representative graph of case two i/ fi+(+8)>1
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Fig. 3: Frequency oscillation against order of derivative
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Fig. 4: The representative graph of case one i/fi-+(+8)»1

Figure 3 1s a representative graph for case three. The
blue graph 1s for & = 1/2, A = 1/8, the red graph 1s
for & =1/2, A =1/4 and the green graph is for & = 1/2. For
a constant value of dand different value of A and
frequency oscillation increases for different values of 4.

Figure 4 is a representative graph of case one
afi+(=8)=1. The blue graph is for -6 = 4 =1 the red graph
is for -8 =2, A =1 and the green graphis for -§ =3, A =1.
The oscillation frequency decreases for different values

Fig.
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127 Frequency oscillation against order of derivative
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5: The representative graph of case two A/ fi+(-5)
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Fig. 6: The representative graph of case three

of 8. Figure 5 is a representative graph from case two,
aifix(-8)=1, a flat start. The blue graph is for
8-2{+2-1), »=8], the red graph is for 0=1/2, A=1/2 and

the green graph is for § = 15/16, A = 1/4.

Figure 6 is a representative graph for case three. The
blue graph is for -6 = 1/2, 4 = 1/8, the red graph is for
-8 =1/2, A =1/4 and the green graph is for 8 = 4 =1/2. For
a constant value of A and different value of & and
frequency oscillation increases for different values of A.

CONCLUSION

In tlis study the strong quadratic nonlinear
fractionally damped oscillator equation was solved
analytically. It was found that the solution 1s very similar
to the Nonfractional case (decayed oscillations but with
the inclusion of an additional decay function). It was
found that there are nine distinct cases both poxitive and
negative damping as opposed to the usual three for the
ordinary damped oscillator. An unexpected result was that
for three of the cases the oscillation frequency actually
increases with increasing order of derivative of the
damping term and then the frequency decreases as
expected.
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