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Abstract: Application of the Genetic Algorithm to the GaAs/AlGaAs quantum wells are presented. We followed
a method that is produced by using the Genetic algorithm, Variation method and Monte Carlo integration
Scheme (GMV method). We have investigated the effect of the well width on the diamagnetic shift. The effect

of the Al doping 1s also investigated.
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INTRODUCTION

Genetic Algorithm (GA) inspired by the biological
world is a general search and optimization method. Tt was
first proposed by Holland in 1975. GA has been applied to
many scientific areas especially 1  engineering
optimization problems. It i1s also used m solving of
quantum mechanical problems. In this study, we have
applied this method to different realistic quantum
mechanical problems of both self-consistent and non-self
consistent type (Banyai and Koch, 1993). The recent
developments in the fabrication technology have given an
opportunity to confine the electrons in two, one and
zero-dimensional semiconductor structures.
Semiconductor quantum nanostructures (quantum wells,
wires or dots) have found various application areas
especially as electronic devices such as single electron
transistor, quantum well and quantum dot infrared photo
detector (QWIP and QDIP). Therefore, these structures
have been intensively studied both theoretically and
experimentally in condensed matter physics. Many
analytical and numerical studies on energy levels and
other physical properties of Quantum Dots (QDs) have
been reported. Different techniques and approximations
had been used in these studies including variational
method, perturbation method, matrix diagonalization,
Monte Carlo, etc. Each one of these techniques has their
own advantages and disadvantages (Bastard, 1988). For
example, the traditional variational method has the
advantage of being simple and straightforward hence, it
15 one of the most frequently used techmques. However,
the chosen trial wave function must be well suited for
describing the system under consideration. If the wave

function is not properly chosen, the results may be far
from the exact ones. In addition to these techmques,
recently, an optimization method namely the genetic
algorithm has begun to be used in computations of the
electronic structures (Mitchell, 1998). Genetic Algorithm
(GA) has been applied to many scientific areas and
engineering optimization and improvement problems since
it was proposed by Holland (1975). Bennett and Shapiro
have applied the GA to the ground states of simple
random [sing-spin systems.

The quantum mechanical application of GA 13 usually
called Quantum Genetic Algorithm (QGA) and is generally
limited only to textbook problems. QGA involves the
minimization of the total energy just like in
conventional  variational method but it has a
probabilistic nature. When it is used in wave function
optimization, the wave function in the QGA is not
constrained by a prescribed analytical form and it
gives results much better than conventional varational
method. Application of QGA is not complicated and it
can be applied to any problem stated on a variational
basis. The choice of the mmtial population 1s not very
important, the system under consideration need not
be represented very well by the initial population.
Especially, after a few tens of generations, the method
converges to a wave function which quite satisfactorily
describes the system under consideration (Bimberg ef af.,
1999). This fast initial convergence of the method is
used in some hybrid methods for the determination
of sufficiently good mitial guesses. However, starting
out with a population describing the system very well
of course, decreases the time required for the
convergence.
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Here, we have applied the method to a single
quantum  well GaAs/AlGaAs and extracted the
diamagnetic shift as a function of magnetic field, mutation
probability, population number, number of genetic
iteration and upper bound of the free parameters.

MATERIALS AND METHODS

Simulation models: Tn spite of the fact that quantum
mechanical applications of GA method 15 based
essentially on energy mimmization as other varational
procedures, it exhibits some important differences. These
differences can be summarized as follows:

GA employs the coding of any parameter (or
parameter set), not parameters themselves

It starts from amny imtial population of possible
solution, not from a single value or analytical
expression

Tt uses some fitness (or objective) information in
procedure, not any derivative or auxiliary knowledge
It follows the probabilistic rules, instead of the
determimstic ones

In the QGA method all the parameters can be
changed simultaneously so that a faster convergence
can be obtained especially for the wvariational
problems with many parameters

The first step m this research i1s the old simple
variational scheme exploits the ground states energy and
eigenfunction of an arbitrary quantum system. In this
scheme one has to select an arbitrary normalized
wave-function (this selected eigen-function is better to
resemble the original one) then using the following
formula the ground state eigen energy can be extracted
(Coley, 2001):

E, :nﬁn_[w*HquI (1

Here, m order to describe the method, we have
applied the method to a symmetric quantum well to
mvestigate the diamagnetic shift. For this purpose, we
have used the Hamiltoman of the following form:
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And the trial wave function 1s selected as follows:

W{E,T) =Lz ) (z, Jexp(-hfo* +a’(z, — 2,7 Ix )

exp(—b’p?)

137

where, f, (7_, ) are the envelop functions and 4, aand b
are the free parameters of this trial wave function that can
be found using minimization of the:

E,(B) =min, , , {[Hw)

The reduced mass is p = (1/m,+(y,+y,¥m,) where v,
and vy, are the Kohn-Luttinger band parameters. The
diamagnetic shift is also simply defined as &= FE,(B)-
Ef{B = 0). As we know the accuracy of the variation
method is strongly depend on the number of free
parameters of the trial wave function but as this number
grows the cpu time to determine them will also
simultaneously grow. Unlke the other mmimization
techniques the Genetic algorithm is able to search
simultaneously a large number of variables and due to the
stochastic nature of this approach it is able to explore
both local and global minima’s at the same time. The
algorithm we have used in this research is as follows: The
approach 1s a subset of the Real Code Genetic algorithm.
At first a number of descendents (the parameters we want
to know them N, population) are generated. Then by
using a fitness function (in this research E; (B) the
propriety of each member of the population is evaluated.
The fitness function determines that which of the
members will be alive in the next iteration of the Genetic
algorithm. The value of this function that can be achieved
using integration is computed using a Monte Carlo
scheme. The Monte Carlo method permits one to find the
value of mtegration to a high order of accuracy by only
small mesh point for the integration while the integrand is
slowly varying. However, if the integrand vacillate too
quickly one has to use another integration scheme instead
of the Monte Carlo method. Now the members are sorted
as that of their value of the fitness function. Half of them
are retamed with the most fitness values and the same
numbers of members are produced from the first half of
members that we had retained. New members are
produced by using the crossover and mutation. The
mutation probability plays an essential role in the results.
We have shown this effect in one of the diagrams that is
presented below.

The fitness values for new members are calculated.
By using merge sort two different half of the population
are combined in such a manner that the resulting
populations are decreasingly sorted. This loop 15 iterated
until the appropriate parameters with the desired accuracy
are computed.

At first step, it seems an upper bound for the free
parameters helps one to have newer members at each
genetic operation and more newer ones have a chance to
come to existence thus we should reach the results more
rapidly (Goldberg, 1999). In other words enlarging the
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interval for the free parameters lead to the results more
quickly because it searches them in a larger interval but
the diagrams show a different consequence.

RESULTS AND DISCUSSION

By applying the method to a single quantum well
GaAs/AlGaAs we have found the diamagnetic shift as
Fig. 1 for free and localized excitons. The initial parameters
are the same with that used by Liu but as it can easily be
seen from the Fig. 1; there are some differences in them. Tt
has different sources. The Ist one is in the genetic
algorithm. When one uses the genetic algorithm to
mvestigate some problem it 1s compulsory to find the
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Fig. 1. Variation of the diamagnetic shift of the heavy-
hole excitonic transition in a GaAs/AlGaAs
quantum well with a thickness of 50 A as a
function of the magnetic field Solid curve is
calculated using the free exciton model by the
method presented here and the Dashed curve 1s
according to Liu
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Fig. 2: Diamagnetic shift as a function of mutation
probability and the applied magnetic field
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best mutation probability. Figure 2 shows the variation of
the diamagnetic shift as a function of the mutation
probability and the applied magnetic field in Tesla. As the
Fig. 2 shows there are an oscillatory aspect versus the
mutation probability thus it 1s not reasonable to use an
arbitrary mutation probability to fine the diamagnetic shift.
However, one has to find the mutation probability that
lead to the least ground state energy. Other sources of
errors are the number of genetic iterations at different
upper limit for the free parameters when the population
number 1s fixed Fig. 3 and 4, population number itself for
a fixed number of genetic iteration, Fig. 5 and the upper
limit for the free parameters, Fig. 6. Tt is clear from the
Fig. 4 that in a fixed population number we have reached
the best results when we used 1 for upper limit for the
upper limit for the free parameters. As we have mentioned
before, in first step, it seems an upper bound for the free
parameters may help to have newer members at each
genetic operation. This means new members have a
chance to come to existence thus we should reach the
results more rapidly. Tn other words enlarging the interval
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Fig. 4: Diamagnetic shift as a function of magnetic field
and number of genetic iteration
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Fig: 5. Diamagnetic shift as a function of population
numbers in each genetic iteration at maximum
genetic iteration 70 and Bx = 20 Tesla

3
5
2
B
c
e
=
a8
Population number
Fig. 6; Diamagnetic shift as a function of population

number and magnetic field B at maximum Genetic
iteration 70

for the free parameters lead to the results more quickly
because 1t searches them in a larger mterval but the
diagrams show a different consequence. As Fig. 4 and 6
show when the upper bound for the free parameters is
smaller the results are much better. The reason is that
having a large number of choices for new member disturbs
the process of finding the most appropriate one. Enlarging
the interval for the free parameters gives a choice of
existence to the new members and the genetic iteration
searches a larger interval but when the candidate for the
best parameters of the system is larger then the selecting
of the best ones 1s also more difficult. Other reason may
be random generator used in the simulation. However,
before starting to extract the results it 13 necessary to font
the optimum condition. Another result that was not so
strange was that increasing in the number of genetic
iteration always does not lead to a higher accuracy and
only 1t oscillate around the real value that is shown n the
Fig. 5. When the effect of changing in the population
number at a fixed magnetic field B = 20 Tesla was
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investigated the Fig. 5 showed an oscillatory behavior. As
the Fig. 5 shows the diamagnetic shift oscillates around
an average value we have presented with the dashed line.
Then we changed the values of the magnetic field B and
extracted the Fig. 6 ina 3D plot. In both Fig. 2 and 6, the
effects of the Genetic algorithm components like
population number and mutation probability at low
magnetic field are small but by increasing it the theses
effects are more visible. Tn summary, we have investigated
a hybrid method based on Genetic algonthm using
variational and Monte Carlo sachems. For illustration
purposes we have applied the method to a single quantum
well and extracted the diamagnetic shift as a function of
magnetic field, mutation probability, population number,
number of genetic iteration and upper bound of the free
parameters. It 1s proved that when one uses Genetic
algorithm to mvestigate some problem, the effect of the
Genetic algorithm component like mutation probability
and population number may be so large that lead to wrong
physical results.

CONCLUSION

Researchers have calculated the electrome structure
of GaAs/AlGaAs quantum wells using the Genetic
algorithm. We followed a method that is produced by
using the Genetic algorithm, Variation method and Monte
Carlo mtegration Scheme (GMV method). We have
wvestigated the effect of the well width on the
diamagnetic shift. The effect of the Al doping 1s also
investigated.
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