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Non-Newtonian Flow of Blood Through an Atherosclerotic Artery
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Abstract: An attempt has been made to investigate the Non-Newtonian behavior on blood flow through a
stenosed artery using Power-law fluid model. Numerical illustration presented at the end of the paper provides

the results for the resistance to flow, apparent viscosity and the wall shear stress through their graphical

representations. Tt has been shown that the resistance to flow, apparent viscosity and wall shear stress

increases with the size of the stenosis but these increases is comparatively small due to Non-Newtonian
behavior of the blood indicating the usefulness of its rheological character in the functioning of the diseased

arterial circulation.
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INTRODUCTION

Atherosclerosis is the leading cause of death in many
countries. There is considerable evidence that vascular
fluid dynamics plays an important role in the development
and progression of arterial stenosis which 1s one of the
most widespread diseases in human beings. The fluid
mechamcal study of blood flow m artery bears some
unportant aspects due to the engineering interest as well
as the feasible medical applications.

The hemodynamic behavior of the blood flow 1s
influenced by the presence of the arterial stenosis. If the
stenosis is present in an artery, normal blood flow is
disturbed. A Newtonian fluid, by definition is one in
which the coefficient of viscosity is constant at all rates
of shear. Homogeneous liquids may behave closely like
Newtonian fluids. However, there are fluids that do not
obey the lmear relationship between shear stress and
shear strain rate. Fluids that exlubit a non-linear
relationship between the shear stress and the rate of shear
strain are called Non-Newtoran fluids. Blood behaviour
15 referred to as Non-Newtoman properties. These
properties are of two types as follows:

* At low shear rates, the apparent viscosity increases
markedly-Sometimes even a certain yield stress is
required for flow

¢ In small tubes, the apparent viscosity at higher rates
of shear is smaller than it is in larger tubes

These two types of anomalies are often referred to as
low shear and high shear effects, respectively. It 1s thus
concluded that the almost

Newtoman at high shear rate while at low shear rate the

behaviour of bleod 1s
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blood exhibits yield stress and non-Newtonian behaviour.
In the series of the studies (Texon, 1957, Hershey and
Cho, 1966; Forrester and Young, 1970; Caro et al., 1971)
the effects on the cardiovascular system can be
understood by studying the blood flow in its vicinity. In
these studies the behavior of the blood has been
considered as a Newtonian fluid. However, it may be
noted that the blood does not behave as a Newtoman
fluid under certain conditions. Tt is generally accepted that
the blood being a suspension of cells, behaves as a
Non-Newtonian fluid at low shear rate (Fry, 1972;
Young and Tsai, 1973; Lee, 1974). It has been pointed out
that the flow behaviour of blood in a tube of small
diameter (<0.2 mm) and at <20 sec™' shear rate can be
represented by a power-low fluid (Kirkeeide et al., 1977,
Charm and Kurland, 1965; Lih, 1975). Tt has also been
suggested that at low shear rate (0.1 sec™") the blood
exhibits yield stress and behaves like a Herschel-Bulkely
fluid (May et al, 1963; Casson, 1959, Reiner and
SottBaldair, 1959).

For blood flows in large arterial vessels (i.e., vessel
diameter >1 mm) (LaBarbera, 1990, Haldar, 1985; Pontrell,
2001) which can be considered as a large deformation
flow, the predominant feature of the rheological behavior
of blood is its shear rate dependent viscosity and its fact
on the hemodynamics of large arterial vessel flows has
not been understood well (Young, 1968, Tandon ef af.,
1991; Tung et al, 2004). In this study the effect of
Non-Newtonian behaviour of blood flow has been
investigated by considering blood as a power-law fluid
model.

Formulation of the problem: In the present analysis, it 1s
assumed that the stenosis develops in the arterial wall in
an axially non-symmetric but radially symmetric manner
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Fig. 1: Stenotic artery

and depends upon the axial distance z and the height of
its growth. Tn such a case the radius of artery, R (z) can be
written as follows (Fig. 1):

RO 1 AL™ (- ) (- a]
R, ’ (1)
d=<z<d+L =1, otherwise,
0
Where:
R (z),R; = The radius of the artery with and without
stenosis, respectively
L, = The stenosis length and d indicates its
location
mz=2A = The parameter determining the stenosis

shape and is referred to as stenosis shape
parameter

Axially symmetric stenosis occurs whenm = 2 and a
parameter A is given by:

m f

m fm - 13

_ 3
R,z (m-1)

Where, & denotes the maximum height of stenosis at:
z=d+ L, m e

Conservation equation and boundary condition: The
equation of motion for laminar and incompressible,
steady, fully-developed, one-dimensional flow of blood
whose viscosity varies along the radial direction n an
artery reduces to Young (1968):

0=_ P N 18(r7)
é&r r dz (2)
0--Z&
ar
Where:
z,v = Co-ordmates with z measured along the axis
r = Measured normal to the axis of the artery
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Following boundary conditions are introduced to
solve the above equations:

awdr=0 atr=0,u=0 atr=R{z)
tis finite at r=0,P=P, atz=0 (3)
P=F. at z=L

ANALYSIS OF THE PROBLEM

Power-law fluid: Non-Newtoman fluid 1s that of
power-law fluid which have constitutive equation:

1/n
du T _
[ ] - m - fir),

T_[dP]RC
dz ) 2

(h

where:

Where:

u = The axial velocity

Tl = The viscosity of fluid

-dp/dz = The pressure gradient

n = The flow behaviour index of the fluid

Solving for u from Eq. 2, 4 and using the boundary
conditions Eq. 3, we have:

du P In 5
= - _ R lin ( )
i { zpj [(r-R.»"]
The volumetric flow rate Q can be defined as:
R R
Q—j2ﬂurdr—ﬂjr[du} dr (6)
; 5 dr
By the help of Eq. 5 and 6, we have:
Q- (i)un nm (R = 1 (7)
Zu (3n+1)

From Eq. 7 pressure gradient 1s written as follows:

Q}n 1
(R)En +1

Integrating Eq. 8 using the condition P =Py at z= 0
and P =P at z=L. We have:

dp
dz

_2M[(3n+l) (8)

nn
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e
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The resistance to flow (resistive impedance) is
denoted by A and defined as follows (Shukla ef al., 1980):

(10)

The resistance to flow from Eq. 10 using Eq. 9 can

write as:
h{(3n+1)Q}n 2u
np QR3n+1
(1)
a d+I_,n L
jdz+ | “z_ |

0 0 (R/R )3n +1 4+ L’u
o

When there is no stenosis in artery then R = R, the
resistance to flow:

2

J ()R
3o+l
0

(12)

. [(3n+1)Q

nn

From Hg. 11 and 12 the ratio of (4, / A,) is given as:

d+Ly
R e E)
A"N L L. " (R/RD)3n+1

Now the ratio of shearing stress at the wall can be
written as:

T (R | (14)
Ty, R
T, 1
T=-—"2=
(15)

Figure 2 reveals the variation of resistance to flow (A)
with stenosis size (8/R,) for different values of flow
behavior index (n). It 1s observed that the resistance to
flow (A) increases as stenosis size (§/R,) increases. It is
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Fig. 4: Variation of wall shear stress with stenosis length
for different value of n

also noticed here that resistance to flow (A) increases as
flow behavior index (n) increases. It is seen from the
(Fig. 2 and 3) that the ratio is always >1 and decreases as
n decreases from unity. This result is similar with the
result of Shukla ez al. (1980). In Fig. 3, resistance to flow
{(A) decreases as stenosis shape parameter (m) increases
and maximum resistance to flow (4) occurs at (m = 2), i.e.,
in case of symmetric stenosis. This result 15 therefore,
consisting to the result of Hershey et al. (1964) and
Haldar (1985). It 1s also seen that for 8/R, = 0.1 and L /L =
1.0. In Fig. 4 the vaniation of wall shear stress (1) with
stenosis length (Ly/L) for different values of flow behavior
index (n) has been shown. This figure shows that wall
shear stress (T) increases as stenosis length increases.
Also it has been seen from this graph that the wall shear
stress (1) increases as value of flow behavior index (n)
increases (Whitmore, 1968; Srivastava and Mishra, 2010).
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Fig. 5: Variation of wall shear stress with stenosis size for
different value n

As the, stenosis grows, the wall shearing stress (1)
mcreases n the stenotic region. It 13 also noted that the
shear ratio given by Lih (1975) 1s 1 and decreases as n
decreases (n<1). These results are similar with the results
of (Shukla et al., 1980). Figure 5 shows the variation of
wall shear stress (T) with stenosis size for different values
of flow behavior index (n). This figure depicts that wall
shear stress (1) increases as stenosis size increases. Also
it has been seen from this graph that the wall shear stress
(T) increases as value of flow behavior index (n) increases.
These results are consistent to the observation of
Shukla et ol (1980) and Mishra et al. (2010). Tt is also seen
that the shear ratio is always >1 and decreases as n
decreases. For 8/R, = 0.1 the mcreases mn wall shear due
to stenosis 15 about 37% when compared to the wall shear
corresponding to the normal artery in the Newtonian case
(n 1) but for n = 2/3 this increase is only 23%
approximately. However for 8/R, = 0.2, the corresponding
mcrease in Newtonian (n 1) and non-Newtoman
(n = 2/3) cases are 95 and 56%, respectively.

CONCLUSION

Blood flow through an artery mainly depends on the
pressure gradient and resistance to flow. Resistance to
flow increases as the stenosis grows and remains
constant outside the stenotic region. In thus study
researchers has studied the behavior of Non-Newtonian
flow in an stenosed artery by considering the blood as
power-law fluid model. Tt has been concluded that the
resistance to flow and wall shear stress increases as the
size of stenosis increases for a given Non-Newtonian
meodel of the blood. These increases are however, small
due to Non-Newtoman behaviour of the blood. It has also
been concluded that the apparent viscosity increases as
vield stress increases and decreases as stenosis shape
parameter increases. The results were greatly influenced
by the change of stenosis shape parameter. Tt appears
that the Non-Newtonian behaviour of the blood 1s helpful
in the functioming of diseased arterial circulation.
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