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Abstract: Three-stage procedure is used to select one of the best simulated designs with high probability. This
procedure mvolves three stages that consists the ordinal optimization approach, subset selection approach and

indifference-zone approach. Normally the three-stage procedure focuses on the probability of correct selection
as a measure of selection quality. Another measure of selection quality is the expected opportunity cost of a

potentially incorrect selection where the opportunity cost in the simulation selection problem is defined as the
difference of unknown mean between the selected best design and the actual best design. In this study, we
select a good simulated design using the three-stage procedure and utilizing the expected opportunity cost of
a potentially incorrect selection. The results of the numerical example show that the procedure selects a good
simulated design with high probability and minimum expected opportunity cost.
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INTRODUCTION

Statistical selection procedures are used to identify
the best of a finite set of sunulation alternatives where the
best simulated design is defined in terms of the minimum
(maximum) expected value of each alternative. Tn this
study, we are considering the problem of selecting the
best design from a finite and large set of alternatives
where the expected value of each alternative can be
mferred by the smnulation. A three-stage procedure
proposed by Almomani and Alrefaei (2010) identify the
best design by using three stages. At first stage, the
Ordinal Optimization (OO) approach is used to select a
subset that overlaps with the set of the best m% designs
with high probability.

At second stage, Subset Selection (SS) approach 1s
used to get a smaller subset that contains the best among
the subset that was selected at the first stage before.
Finally, the Indifference-Zone (I7) approach is used to
select the best design among the subset from the second
stage. However, since sumulation output has randomness,
the best design cannot be selected with certainty. Instead,
selection procedures provide some measure of the quality
of selection. There are two measures of selection quality,
the first one is the Probability of Correct Selection P (CS)
and the second measure 13 the Expected Opportunity Cost
E (OC) of a potentially incorrect selection. Almomari and
Alrefaer (2010) proposed the three-stage procedure from
the contexts of P (CS). However, this study provides the
three-stage procedure from the context of E (OC), the

second measure of the quality. Traditional selection
procedures 1dentify the best design with high probability
of correct selection by maximizing the P (CS). Since, the E
{(OC) become important in many applications like business
and engineering applications, it leads to a recently new
selection procedures to reduce the opportunity cost of a
potentially incorrect selection (Gupta and Miescke, 1994,
1996; Chick and Inoue, 2001a, b). (Almomani and Alrefaei,
2010) showed that the three-stage procedure 1s indeed to
select one of the best simulated design with its P (CS). In
this study we are using the three-stage procedure to
select the best simulated design by providing the E {(OC)
as a measure of the quality of selection.

PROBLEM STATEMENT
We consider the following optimization problem:

it ©

f(B)=E[L {6, Y)]
Where:
f = The expected performance measure of some complex
stochastic system
© = Arbitrary feasible solution set that finite and has no
structure

= A vector representing the system design parameters
= Represents all the random effect of the design and
A deterministic function that depends on 6 and Y

=)
|
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The goal of the selection procedure is to identify the
best n simulated designs where the best in this study is
defined as the design with the smallest mean which is
unknown and to be mferred from simulation. Suppose that
there are n designs. Let Y, represent the jth output from
designiand let Y, = {Y,,j =1, 2,...} denote the cutput
sequence from design i. We assume that Y, are
independent and identically distributed (i.i.d) normal with
unknown means y; = E (Y,) and variances 0° = V_ (Y,). In
addition, we assume that the Y,, Y,, .Y, are mutually
independent. The normality assumption is not a problem
here because simulation outputs are obtamed from an
average performance or batch means. So by using the
Central Limit Theorem the normality assumption 1s hold.
Tn practice the ¢° are unknown so we estimate it using the
sample variances $°. Throughout this study we assume
that a smallest mean 1s better so if the ordered p-values
are denoted by p<py<.....<uy then the design having
mean is referred i, to as the best design. The CS occurs
when the design selected by the selection procedure is
the same as the true best design.

In the simulation selection problem, the opportunty
cost 18 represented as the difference between the
unknown means of the selected design and the actual
best design:

oC= =y
Where:
b = The design with the smallest sample mean
1" = The true best design

If the best design is correctly selected then the OC is
Zero:
=0;

=0,

o B b=i*

=y~ Hp = bi*

This follow with the Expected Opportunity Cost
(E (OC)) in which 13 defined as E (OC)=E (L-p;+)
(Chick and Wu, 2005; He et al., 2007).

BACKGROUND

Ordinal Optimization (00): OO concentrates on
1solating a subset of good designs with lugh probability
and reduces the required simulation time dramatically for
discrete event simulation. The OO approach has been
proposed by Ho et al. (1992). Since then, it has emerged
as an efficient technique for simulation and optimization.
In this approach, the aim 1s to find a good enough
solution, rather than to estimate accurately the
performance value of these designs. If we simulate the
design to estimate the expected performance measure, the
confidence interval of this estimate cannot be improved
faster than 1/+a where n is the number of replications
used. This rate may be good for many problems when
there are a small number of alternatives but it 1s not good
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enough for a complex simulation with a larger number of
alternatives. The reason is that since each sample requires
one simulation run, we need a large number of samples
when we are dealing with a huge number of altemative
designs n the solution set which 13 very hard and
impossible. In this case, one could compromise the
objective to get a good enough solution rather than doing
extensive simulation which is impossible in many cases.
However, in many real world applications using a simpler
model to get an accurate estimate 1s somehow mmpossible.
Suppose that the Correct Selection (C3) is to select a
subset G of g designs from the feasible solution set that
contains at least one of the top m% best designs. Since
we assume that ® is very huge then the probability of CS
is given by:

m g
P(CS)~(1—(1—E) )

Now, suppose that the CS 1s to select a subset G of
g designs that contains at least r of the best s designs. Let
S be the subset that contains the actual best s designs
then the probability of CS can be obtained using the
hyper geometric distribution as:
8 ns}

Ji

P(CS)=P(G A S > 1)= Zg: [i g1
7 " {HJ

2]
However, it assummne that the number of alternatives 1s

very large then P (CS) can be approximated by the
binomial random variable: Therefore,

Ea) )

where 1t assume that smx100% = m%. It 1s also clear
that tlus P (CS) mcreases when the sample size g
ncreases.

P(CS)ng:

1=1

Subset Selection (SS): 5SS approach screens out the
search space and eliminate non-competitive designs and
construct a subset that contamns the best design with high
probability. We can use this approach when the number
of alternatives 1s relatively large to select (a random-size)
subset that contains the actual best design. We require
that P (CS)>1 - where CS the correct selection is selecting
a subset that contains the actual best design and 1-¢ is a
predetermined probability. The SS approach dating back
to Gupta (1965) who presented a single stage procedure
for producing a subset containing the best design with a
specified probability. Extensions of this research which is
relevant to the simulation setting include (Sullivan and
Wilson, 1989) who derived a two stage SS approach that
determines a subset of maximum size m that with a
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specified probability will contain designs that are
all within a pre-specified amount of the optimum.

Indifference Zone (IZ): The main aim of [Z approach 1s
selecting the best design among n designs when n<20.
Suppose we have n alternative designs that are normally
distributed with unknown means {,, p,.....ll;; and suppose
that these means are ordered as pj<pp<,...<pEy We
seek to locate the design that has the best mimmum mean
L. The IZ is defined to be the interval [py,;, p,+8] where
d is a predetermined small positive real number. We are
mnterested in selecting an alternative k such that e [y,
uy 0], Let CS here 1s selecting an alternative whose mean
belongs to the indifference zone. We would like the
correct selection to take place with high probability say
with a probability not smaller than 1-¢ where 1/n<l-g<1.
Care must be taken in specifying the value of & because
the design requires to implicitly determining the common
single-stage sample size required for the n competing
designs. If & is too small then the number of observations
15 expected to be large. Also when the 1-a 13 large then
the number of observations is expected to be large. The
indifference-zone approach consists of two stages. In the
first stage, all designs are sampled using t; sunulation
runs to get an 1mtial estimate of expected performance
measure and their variances. Next, depending on the

mformation obtaned 1n the first stage, we compute how
many more samples are needed in the second stage for
each design to guarantee that P (CS)>1-¢. Rinott (1978)
has presented a procedure that is applicable when the
data are normally distributed and all designs are simulated
independently of each others. This procedure consists of
two stages for the case when variances are completely
unknown. Tamhane and Bechhofer (1977) has presented
a simple procedure that is valid when variances may not
be equal. Nelson et al (2001) proposed a two-stage
subset selection procedure.

The first stage is to reduce the number of competitive
designs. These designs are carried out to the second
stage in which invelved with the indifference-zone
approach using the mformation gathered from the first
stage. Alrefaei and Almomani (2007) proposed two
sequential algorithms for selecting a subset of k designs
that is contained in the set of the top s designs. Another
comprehensive ranking and
procedures can be found by Goldsman and Nelson (1994),
Bechhofer et al. (1995) by Kim and Nelson (2006, 2007).

review of selection

THREE-STAGE PROCEDURE

This procedure consists three stages in the first
stage, a subset G is selected randomly from the feasible
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solution set 6. Let g denotes the size of the subset G
where g is a relatively small number but the probability
that G containg one of the best m% alternatives is high. In
the second stage, the SS approach is applied on the
subset G to select a subset I that contains the best design
with high probability where [I|<20. Note that the size of the
subset G is small so we can use the SS approach. Finally,
the 17 approach is applied on the set T to select the best
design. Note that the size of set T is <20 so that we can
use the 1Z approach. The algorithm of the three-stage
procedure 1s described as follows:

Algorithm:

»  Determine the number of alternatives gin G, 1.e., |G| =
g where G is the subset that will be selected in the
first stage that satisfies P (G contams at least one of
the best m% design) = 2 1-¢,. Determine the number
of samples t,22 and the indifference zone &
t=ty, sy from the t-distribution

Select a subset G of size g randomly from the feasible
solution set @

Take random samples of t; observations y, (1<j<ty)
for each designi,1=1,
Calculate the first stage sample means and vanances "
and $¢ as:

tg _
DY, =YY

and 8§72

tg
2V
FO _ it
1

t, v

where, 1= 1,..., g and v = t;-1 degrees of freedom.

Let:
L e ..
W =t| ++-L | forallizj
tD 0
. Set:
I={:l<izgand YV <Y - (W, -8), iz j}
Where:

(x)” =xif x<0 and (x)~ = 0 otherwise
If T contain a single index then this design is the best

design. Otherwise for all 1] compute the second
stage sample size Ti-t;,, where:
hs,

ol 2]

h = (1-w/2, t, t[‘) be the Rinott’s constant and can be
obtained from tables of (Wilcox, 1984).

Take a random sample of T-t; additional
observations for all designs 1l and compute the
overall sample means:
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For all 1l

Select the design 1€l with the smallest ¥ as the
best design

Nelson et al. (2001) have shown that with a
probability of at least 1-(e,+x) this approach selected the
best design in the subset G. Therefore, if G contains at
least one of the top m% designs then this procedure
selects a good design with probability 1-(e,+e,). From the
00, the selected set G contains at least one of the best
m% designs with probability:

g
] =1l-q,

ﬁl—[

Therefore, the P (the selected design by three-stage
procedure 15 mn the top m% designs)=(1-a, )(1-(a,+a,)).

Lm
100

NUMERICAL EXAMPLE

Consider the queuing designs when the inter arrival
times and the service times are exponentially distributed
and the design has one server. This queuing design is
known as M/M/1 queuing design. In this design, the
arrival process follows a Poisson distribution with rate A
(the mean arrival rate) and the service time 13 exponentially
distributed with parameter p (the mean service rate).
Suppose we have n M/M/1 queuing designs and we want
to select one of the best m% queuing models that have
the minimum average waiting time per customer. We
assume that the arrival rate A 1s fixed and the service rate
uela, b]. Of course this problem has analytical solution in
the steady state case. We implement the algorithm of
three-stage procedure for solving this problem under
some parameter settings. In the first experiment, we
assume thatn= 1000, A =1 and pe[4, 5]. We discretize the
problem by assuming that @ = {4.001, 4.002, ..., 5.0000}. Of
course, the best design 15 1000th design with p, = 5.
Suppose we want to select one of the best (2%) designs.
Then we are shooting for designs 981-1000. Let |G| = 50,
®, = o, = 0.005 and & = 0.05. We consider it as a correct
selection if the selected design belongs to {lus, Magz-..
Miot. Note that, we can evaluate the analytical
probability of the correct selection as:

P(CS) = {1— [1— %} ](1 —(0.005 + 0.005)) = 0.62

420

Table 1: The numerical illustration for n = 1000, g = 50, t = 30, m% = 2%

Three-stage  Analytical
Best Wy Ve Yy E(0Q) E(©Q)
971 0.25182573 0.3314 0.3305 -0.0009 0.00182573
984 0.25100401 0.2959 0.2948 -0.0011 0.00100401
997 0.25018764 0.3343 0.3331 -0.0012 0.00018764
984 0.25100401 0.2827 0.2844 0.0017 0.00100401
931 0.25438819 0.2751 0.2772 0.0021 0.00438819
990 0.25062656 0.3082 0.3089 0.0007 0.00062656
953 0.25297242 0.2832 0.2876 0.0044 0.00297242
998 0.25012506 0.3026 0.3038 0.0012 0.00012506
950 0.25316455 0.2963 0.3286 0.0323 0.00316455
993 0.25043826 0.3358 0.3319 -0.0039 0.00043826

Table 2: TheP (CS8) and Ecoc; for n=1000, g =50, t; =30, m% =2%
over 100 replications

Measures of selection quality Three-stage Analytical
P (C8) 0.60 0.62
E(OC) 0.00180800 0.00170173

Table 1 contains the result of this illustration with 10
replications for selecting one of the best (2%) designs.
From the Table 1, best is referring to the index of the
design that has been selected by three-stage procedure as
the best design, w. is the unknown average waiting time
for the actual best design i’ (herei’ = 1000 and w. =0.25),
w, 1s the unknown average waiting time for the best
design b (b = Best), y. is the sample mean for the
actual best designl, ¥, is the sample mean for the
best design b, three-stage E(CC)=E(¥,-¥%) and the
analytical E(OC)=E{®, -®,) Note that we can find w. and w,
from the formula:

_ 1
W, =
oA
Where:
i = The service rate for the design
1and A; = The arrival rate for the design 1

Moreover, after the simulation is performed, ¥, can be
calculated according to the design output. Note that in
some replications there are negative values for three-stage
E (OC) whereas E (OC) should be positive values. The
reason for this is that m the first stage of three-stage
procedure we used OO to select randomly the set G soin
some replications we are not selecting the actual best
design i from the first stage. This means that the actual
best design i’ is not belongs to the set G. It implying that
we have not take mto consideration, the addition
observation n stage three compare to the best design b.
Therefore the sample mean for the best design b sometime
become less than the sample mean for the actual best
design ", (ie.¥, <¥,) and this mmplies that the three-stage

E(OS)=E(¥, - ¥,.)< 0. The above numerical examples
are extended for 100 replications and the results are
shown in Table 2. It is clear that each P (CS) and E(00)
values (the average number of Expected Opportunity
Cost) for three-stage procedure is closed to the analytical
values. Figure 1 shows the relation between the E (OC) for
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Fig. 1: Relation between three-stage E (OC) and Analytical E (OC) for n = 1000, g = 50, t, = 30, m% = 2% over 100
replications
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Fig. 2: Relation between three-stage E (OC) and Analytical E (OC) for n = 1000, g = 50, t, = 30, m% = 2% over 100
replications

the three-stage procedure and the analytical E (OC) when
this experiment were repeated for 100 replications. If we
take the difference between the ¥, and V. as absolute
value (positive) then we can sce the relation between
three-stage E (OC) and Analytical E (OC) in Fig. 2. Note
that three-stage procedure produce a very small E (OC)
and are mostly closed to the values of the analytical E
(OC). For the next experiment, assume n = 1000, A =1 and
ue[4, 5]. We want to select one of the best (5%) designs.
Letg= 50, o, = &3 = 0.005 and 8 = 0.05. We consider it
as a correct selection if the selected design belongs
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10 {Mosi» Moszso.r Migeo. Note that we can evaluate the
analytical probability of the correct selection as:

5 50
P(CS) > [1— [1 _Wj j(l —(0.005 + 0.003)) = 0.91

Table 3 contains the result of this illustration with 10
replications for selecting one of the best (5%) designs.
The above numerical experiments are extended for 100
replications and the results are shown in Table 4. The
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Fig. 4: Relation between three-stage E (OC) and Analytical E (OC) for n = 1000, g = 50, t, = 30, m% = 2% over 100

replications

Table 3: The numerical illustration for n = 1000, g = 50, t, = 30, m% =

2%
_ Three-stage  Analytical

Best W, Ye Yo E (0C) E (0C)

951  0.253100481  0.2663 0.2675 0.0012 0.003100481
983 0251067035  0.3118 0.3129 0.0011 0.001067035
915 0255427842  0.2953 0.2989 0.0036 0.005427842
970 0251889169  0.2621 0.2529  -0.0092 0.001889169
974 0251635632  0.2964 0.3021 0.0057 0.001635632
966 0252143217  0.2740 0.2801 0.0061 0.002143217
993 0.250438267  0.2631 0.2608  -0.0023 0.000438267
968 0252016129  0.2740 0.2801 0.0061 0.002016129
987 0250815149  0.2475 0.2484 0.0009 0.000815149
953 0.252972426  0.2747 0.2734  -0.0013 0.002972426

Table 4: The P (CS) and E(oc) forn = 1000, g =50, t =20, m% = 5%
over 100 replications

Measures of selection quality Three-stage Analytical
P (CS) 0.88 0.91
E(OC) 0.00260100 0.00241047
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following still show that each value of P (CS) and for
three-stage procedure is closed to the analytical values.
Figure 3 show the relation between the E (OC) for the
three-stage procedure and the analytical E (OC) when this
experiment were repeated for 100 replications. If we take
the difference between the ¥, and ¥. as absolute value
then we can see the relation between three-stage E (OC)
and Analytical E (OC) in Fig. 4.

CONCLUSION

In this study, we have presented a three-stage
procedure that selects one of the good enough simulated
design in contexts of E (OC) of a potentially incorrect
selection. In the first stage, we use the ordinal
optimization approach to select a relatively small subset
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G where the intersection with the set that contains the
actual best m% alternatives is high. Then subset Selection
approach are used to select a smaller subset T that
contains the best alternative of G where |[|<20. These are
following by the indifference-zone approach to select the
best alternative of I which highly results in selecting an
alternative that belongs to the top m% alternatives. We
have also discussed how to implement the algorithm for
a given problem involving M/M/1 queuing models.

The numerical results indicate that the three-stage
procedure 1s sound and work practically well. We also
note that the P (CS) values for this procedure are much
closed to the values of analytical P (CS). In addition the
three-stage procedwre also guarantees to provide the
mimimum value of E (OC). In future research we would like
to improve the three-stage procedure to reduce the E (OC)
and applied it in real life problems. Moreover, we will
study the efficiency of three-stage procedure when there
1s a changing 1n the mitial sample size t,, since we cannot
ignore that from the numerical example, it shows that the
efficiency of three-stage procedure is sensitive to t,.
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