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Abstract: We have solved numerically the Schrodinger wave equation for one-dimension or spherically
symmetric potential by writing a code in FORTRAN. The method which we have used in the calculation is
based on Runge-Kutta method. The Schrodinger equation has been solved for different V (x) and has been
checked for the Hydrogen atom. The solutions are consistent with resent data.
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INTRODUCTION

The more general 3-D time-dependent Schrodinger's
equation is given by Gasiorowicz (1995):
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The right-hand side of the equation is the total energy
of system where we have the identification that energy 1s
given by:
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In the above equations E and H are operators and act
on the wave function to give the actual energies. If the
potential dos not vary with time one can separate the
time-dependent Schrodinger equation to two equations,
time dependent and time independent equations;
therefore the Schrodinger equation is simplified to:
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The solution to the Sclrodinger equation m three
dimensions 1s quite complicated in general. Fortunately,
nature lends us a hand, since most physical systems are
rotationally invariant. Tt means potential depends on the
distance between particles but not their direction. In that

case one can separate variables by wsing suitable
coordinates. In case the total angler momentum is
conserved, the partial Schrodinger equation can be solved
by the separation of variables.

One can substitute separated solution into the
time-independent Schrodinger equation and obtain the
radial equation which depends on one variable. In recent
years there has been much activity in the area of the
numerical solution of the radial or one-dimensional
Schrodinger equation (Avdelas and Simos, 2001). The
aim of this activity 18 to present a method to solve
one-dimension time independent Schrodinger equation
(Eq. 12) or the radial Schrodinger equation (Eq. 24) for
several potentials and attain full eigenfunctions and
eigenvalues. We have written a code which has been
written in FORTRAN. The numerical method which we
have used is the Runge-Kuftta method. The method which
has been used is suitable when the partial time dependent
Schrodinger equation 1s separated to ordmnary time-
independent Schrodinger equations.

RUNGE-KUTTA METHOD

Many differential equations cannot be solved
analytically, in which case we have to satisfy ourselves
with an approximation to the solution. The method which
we have used in the calculation 1s the fourth-order Runge-
Kutta method. In numerical analysis, the Runge-Kutta
methods are an important family of implicit and explicit
iterative methods for the approximation of solutions of
ordinary differential equations. They are very accurate,

powerful and well-behaved for a wide range of problems.

Corresponding Author: A. Binesh, Department of Physics, Payam Nour University, Fariman, Iran



Res. J. Applied Sci., 5 (6): 383-387, 2010

To explain the Runge-Kutta manner, we start with the
single vanable differential equation y' = f (t; y) with imtial
condition y (t;) = y,. Suppose that y, is the value of the
variable at point t,. The Runge-Kutta formula takes y, and
t, and calculates an approximation for y,., at a brief point
later, t, + h. Tt uses a weighted average of approximated
values of f (t; y) at several points within the interval
(vo; Vou)- The formula 1s given by:

V.. =Y. +é(k1 +2k, + 2k, + k,) ()
Where:

k,=hf(x,.y,) (6)
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Thus, the next value (y,.,) 18 determined by the
present value (y,) plus the product of the size of the
interval (h) and an estimated slope. The slope is a
welghted average of slopes:

* I, is the slope at the beginning of the interval

* Lk, 1s the slope at the midpoint of the interval, using
slope

¢ Ik, to determine the value of y at the point t, + h/2
using Huler's method (Press ef al., 1992)

* Lk, is again the slope at the midpoint but now using
the slope k, to determine the y-value

* Lk, 18 the slope at the end of the mterval with its y-
value determined using k,

In averaging the four slopes, greater weight 1s given
to the slopes at the mid-pomt:

slope = é(k1 + 2k, + 2k, + k) (10)

The RK4 method 1s a fourth-order method, meaning
that the error per step is on the order of h5, while the total
accumulated error has order h' (Press ef af., 1992). Note
that the above formulas are valid for both scalar and
vector-valued functions (ie., y can be a vector). One-
dimensional Schrodinger equation 18 a second-order
differential equation and any second-order differential
equation can be written as a set of two first-order
equations:
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Each of these first-order differential equations can
be solved by the above Runge-Kutta forth orders
(Lxaru, 1984). We applied this mathematical method for
one-dimensional Schrodinger equation to find the
eigenfunctions and eigenvalues for different potential
functions:
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THE NUMERICAL SOLUTION OF THE
SCHRODINGER EQUATION

The Schrodinger equation doses not have the
complete algebra solution for an arbitrary potential;
however, there 13 a chance to be solved by numerical
methods. In general the Schrodinger equation 1s a partial
differential equation in terms of x, v, z and t but n some
cases it is separated to ordinary differential equation.
When the potential for a two particle system depends on
distance between particles or in the special condition it
just depends on one variable ( for example 1 or %), The
Schrodinger equation can be separated to Eq. 12 or 24
which 1s one-dimensional equation. Before solving the
Eq. 12 or 24 for different potentials, we should set the
boundary conditions in the numerical calculation
according to physics problem. As we know the wave
function and the derivative of the wave function must be
continuous, fimte and the integral of the probability
density must be limited:

JeP W (x)dx=1 (13)

To overcome these conditions m the calculation we
set one of the following conditions in the program. We
know when x goes infinity, the wave function and the
derivative of the wave function should goes zero. Tnstead
of these conditions we presume:

. B AP (x)
LimY¥(x)=¢, leT =0 (14)
x —>*R x —>*R
LimY¥ (x)=0, Lim% =g (15)
X — =R X — =R
or:
. . AW (x)
Lim"Y¥ (x)=constant, Lim———==0
6o ax (16)
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Here is small number and R is very big number.
Applying each one of the above conditions is arbitrary;
however, choosing suitable condition in the program is
very important to avoid of over flowing in the computer
program. In the computer program, we also use the atomic
units instead of SI units because Plank constant is a small
number for a computer program. In the atomic units length
is given in terms of Angstrom A and energy is shown in
terms of electron volt (eV), so we have:

h=7.6199682m,eVALm, c?=051101x10°eV (17)

and the fine structure is shown by:

eZ

=14.39998eV A (18)

4mg,

Here, m, is the rest mass of electron. We have solved
numerically the Schrodinger ecquation for some different
potential. Some of the potentials which we have chosen
to test the program and the other is correspond to the
potential of the Hydrogen atom.

RESULTS

Example I: As a first example we have solved the Eq. 12
for the following potential:

V (x) = ax’ + bx’ (19

Here, we set:

a=05e VA™ b=025eVVA™ (20)

Because the potential 1s symmetry, we have used the
following boundary conditions:

¢,

Lim'¥ (x)= constant, Lim (21)

X —E 3 Eg,, OFX—5Hpp X—SE—sEg,, OFX X,

The wave function goes constant at x = x,,, Or X, SO
we choose W (x = x,,, or X,,.) = 1 and =2 _s as initial
conditions. We start with B, = 1 eV (ground state) as a
arbitrary value and calculate the wave function
(by solving the Eq. 12 numerically). If the wave function
matches with the boundary conditions, it 13 a solution;
otherwise we change the value of E, to find a wave
function which 1s consistent with the boundary
conditions. Figure 1 shows that B, = 2:047459 eV 15 a
reliable solution because the wave function becomes
zero for the large value of x. Fig. 2 shows the solutions of
the Eq. 12 for tlree different values of E, (2:047 eV,
2:047459 eV 2:048 eV ). It shows consistent solution with

385

E=lev E=

2eVE=2046¢eV

U

X (A%

Fig. 1: The solutions of the Schrodinger equation for
different energy values (E;) of grand state. It
shows the suitable solution for the equation
occurs when B, = 2:047459
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Fig. 2. The solutions of the Schrodinger equation for
three value of E = 2.048, 2.047459 and 2.047 eV
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Fig. 3: The probability density of the grand, the first and
the second excited states

the boundary conditions occurs when E, equals with
2:047459. Figure 3 plots the probability density for the
grand state and the first and the second excited state.
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V (x) = ABS (S*X'VH10*EXP (-(X-2))-2
E=11.6841 eV
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Fig. 4 The wave functions of the grand and the first
excited states
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Fig. 5. The energy spectrum and the difference between
the energy levels

Example II: In example 11, we have solved the Schrodinger
equation with a quite difficult potential:

V(x)=[0.5x"|+ 106 ¢ -2 (22)

The potential is not symmetry; therefore we have
chosen the following boundary conditions:

LimY¥{x)=¢€, Lim 0

dV(x) _
dx (23)

X —>*R X —> xR

Here we have used R = 20 A. As we have done
before, we start with an arbitrary point for En (energy
eigenvalue); find the solution of the Schrodinger equation
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(the wave function). Then, if the solution is consistent
with boundary conditions, it is acceptable; otherwise we
exam with different value of E,. We continue procedure to
find the reasonable solution. In Fig. 4, the wave functions
of the ground and the first excited state are presented.
The energy eigenvalues for grand state and excited states
are shown m Fig. 5.

Hydrogen-like atoms: Tn a hydrogenic atom or ion with
nuclear charge +7e there is the Coulomb attraction
between electron and nucleus. This has spherical
symmetry potential only depends on r. This is known as
a central potential. For a central potential the radial
Schrodinger equation 1s given by:

d2

dI_Z

101+ LA

21’

IR(r) =0 (24

2d 2u
[ +?E]R(I‘)+?[E+V(I‘)—

Here, 1s the reduced mass:
1 = Angular momentum quantum number
R (r)= The radial wave function. For Hydrogen or
electron-positron atom, the potential is given by:
2

© (25)

Vir)=
@ dne.r

Therefore, the radial Schrodinger equation 1s given by:

7Ze'

dnme,r

2
%% _ W]R = (26)
T

IR+ 2—tl[E +
b7 2ur

d2
et

To solve the radial Schrodinger equation with
Hydrogen (or electron-positron) atom potential, the
following boundary conditions have been chosen:

&R
dr

=107 (27)

=0.0001

=-1000

r=0.0001

: R |,

Then, an arbitrary value for E has been chosen and
the equation has been solved numerically to obtain the
wave function. If the obtamed wave function 1s consisted
with the boundary conditions, it 13 solution; otherwise we
solve the radial Schrodinger equation with different value
for E. We continue this way to get correct solution. By
this method, we have calculated the energy of the grand
state of Hydrogen and electron- positron atom -13:6056
and -6:803 eV, respectively.

Moreover, Fig. 6 shows the wave function of the
grand state for Hydrogen and electron-positron atom.
In Fig. 7 we have presented the probability density of the
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Fig. 6; The radial wave functions of hydrogen and
positron-electron atoms
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Fig. 7: The probability density of the grand state

grand state. Tn the above examples we have solved
one-dimension Schrodinger equation numerically by
using fourth-order Runge-Kutta method.
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CONCLUSION

In this study, we have investigated how fourth-order
Runge-Kutta method can be applied in the solution of the
Schrodinger equation. Suggestion of proper boundary
conditions to solving Schrodinger equation for different
potentials 1s very umportant i numerical solutions. Using
a Runge-Kutta based algorithm we have been able to
regularize the problems which rise in solving Schrodinger
equation such as the singularity and the mfimty of the
wave function For different potentials
considered suitable boundary conditions. For a problem
with a potential which behaves as a Coulomb potential

we  have

both around the origin and in the asymptotic range we
considered a more accurate treatment of the numerical
boundaries.
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