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Abstract: In this study, the performance of an Autocovariance Base Estimator (ABE) for GARCH models was
studied, against that of the Maximum Likelihood Estimator (MLE) if the distribution assumption 15 wrongly
specified as normal. We do this by first simulating time series data that fits GARCH model using the Log
normal and t-distribution with degrees of freedom of 5, 10 and 15 as the true probability distribution but
assumed normality in the process of parameter estimations. To keep track of consistency, we conduct and
present the studies msample sizes of 200, 500, 1000 and 1200. The two methods were then used to analyse
the series under normality assumption. The result shows that the ABE method appears to be competitive in the

situations considered.

Key words: Autocovariance functions, parameter estunation, normality, probabibilty, distnibution GARCH,

invalid

INTRODUCTION

The assumption of constant variance in the
traditional time series models of ARMA is a major
impediment to their applications in financial time series
data where heteroscedasticity is obvious and cannot be
neglected. To solve the stated problem, Engle (1982)
proposed Autoregressive Conditional Heteroscedascity
(ARCH) model. However, Engle in his first application of
ARCH noted that a high order of ARCH is needed to
satisfactorily model time varying variances. Tt is noted
that many parameters in ARCH will create convergence
problems for maximization routines. To avoid these
problems, Bollerslev (1986) extended Engle's model
to Generalized Autoregressive Conditional.
Heteroscedasticity models (GARCH).

This models time-varying variances as a linear
function of past square residuals and of its past value. Tt
has proved useful in interpreting volatility clustering
effects and has wide acceptance in measuring the
volatility of financial markets. The ARCH and GARCH
models are known as symmetric models. Other extensions
based on observed characteristic of financial time series
data are:
¢ The asymmetric models of which the exponential
GARCH (EGARCH) model of Nelson (1991), the model
of Gosten et al. (1993) (GIR-GARCH) of as well as the
threshold model (T GARCH) of Zakoian (1994) are
representatives models. These modes and interpret
leverage effect where volatility is negatively correlated
with returns
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The Fractionally TIntegrated GARCH model
(FIGARCH) of Baillie ef al. (1996 ) introduced to model
long memory via the fractional operator (1-L)*

The GARCH in mean models that allows the mean to
influence the variance

These models are popularly estimated by the
Quasi-maximum [ikelihood Method (QMLE) under the
assumption that the distribution of one observation
conditionally to the past 13 normal. The asymptotic
properties of the estimator are well established. Weiss
(1986) showed that the QMLE estimates are consistent
and asymptotically normal under the fourth moment
conditions.

These were agam proved by Ling and Mcaleer (2003),
under only the second moment conditions. If the
assumption of normality is satisfied by the data then the
method will produce efficient estimates otherwise
wnefficient  estimates will be produced. Engle and
Gonzalez-Revera (1991) studied the loss of estimation
efficiency inherent in QMLE and concluded it may be
severe if the distribution density 1s heavy tailed.

The QMLE estimator requires the use of numerical
optimization procedure which depends on different
optimization techniques for implementation. This
potentially leads to different estimates. This is
confirmed by recent studies by Brooks et af. (2001) and
McCullough and Renfro (1999). Both reported different
QMLE estimates across various packages using different
optimization routines. These techniques estimates time
varying variances in different ways and may result to
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different interpretations and predictions with varying
implications to the economy. It is therefore important to
undertake studies that would develop appropriate
techniques for estimating parameters of processes used in
modeling time series data.

To solve the stated problems, Em and Etuk (2006)
developed an Autocovariance Base Estimator (ABE) for
estimating the parameters of GARCH models through an
ARMA transformation of the GARCH model ecuation. The
thrust of thus study 1s to rate the performance of the
Autocovariance Base Estimator when the normality
assumption 1s violated.

The Autocovariance Base Estimator (ABE): Consider the
GARCH (p, q) equation:

v ]
h, =w,+ Y oel +YBh ()
1=1 1=1

Or its ARMA (Max (p, q),q) transform:

max (p

+

-4

2
gl =w

0

) 4
(o,+B)e’,~Y Ba, +Ba, (2

1= =1

e~ N (0, 6%)

To obtain the autoregressive parameters, we take
advantage of the fact that the variance, var (¢, €%, ) for i>q
i Eq. 2 will contain no moving average parameter B,.
Hencewe seti=q+1... g+ pto get the estimator:
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Where V, is the set of variances associated with
Eq. 2. We can easily obtain the autoregressive parameters
o, + B; by solving Eq. 3. Eni and Etuk (2006) have shown

that the moving average parameters can be obtained

from:
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Note that the quantity ;f@a)v‘b is already lknown.
The variance V having been calculated from the data
and the autoregressive parameters having been calculated
from Eq. 3.

We find the moving average parameters Bi by solving
the system:

F(B):zp:f(CDi V@& -aBb=0 (6)

Eqution 5 is nonlinear and the solution can be
found only through an iterative method. A ready
procedure to consider is the one which depends on
the Newton-Raphson algorithm. In this case, the B,
solution is obtained from the rth approximation according

to:

B,., =B, ~{f'(B)} f(B) )

where, f (B,) and £ (B,) represent the vector Eq. 5 and its
derivative evaluated at B = B, We note that:
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So that (4.12) becomes:
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The starting point for the iteration Eq. 8 is %=1,
Bi=V.,B=0,1=1...q

Having computed the Autoregressive parameters
@, = (¢; + B)) and the Moving average parameter B it 15
easy to obtamn the GARCH (p, q) parameters ¢; and the
constant parameter w, which is estimated using:
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1=1

B
_ 2 B)

1=1
MATERIALS AND METHODS

In this study, the Data Generating Process (DGP)
involves the simulation of 1,500 data points with 10
replications using the random number generator in
MATLAB 5. The random number generator in MATLAB
5 can generate all the floating point numbers in the
interval [27, 1-27"]. Hence it can generate 2"** values
before repeating itself. We note that the data points of
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1,500 are equivalent to 2'"* and with 10 replications; we
will have a mere 2"%* data points. Hence the 1,500 data
points with 10 replications were obtained without
repetitions. Also, we used a program implementation for
ARMA due to McLeod and Sales (1983) to find the
QMLE. Although, we would assume Normality, we
actually simulated the data points using Log normal
distribution and the t-distribution with degree of freedom
of 5,10 and 15. Of the 1,500 data points generated for each
of the process, the first 200 observations were discarded
to avold mitiahization effects, yielding a sample size of
12000 observations. The results are reported in sample
sizes of 200, 500, 1000 and 1,200.

These sample presentations are to enable us keep
track of consistency and efficiency of the estimators. The
relative efficiency of the Autocovariances Based
Estimator (ABE) and the Quasi-maximum Likelihood
(QML) estimators were  studied under  this
misspecification of distribution function. The selection
criteria used is the Aikake Information Criteria (ATC). For
simulating the data points, the conditional variance
equation for low persistence due to Engle and Ng (1993)
1s adopted:

h, =0.2+0.058 , +0.75h,
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and 7°, is any of

Table 1: Performance rating of QMLE and ABE for sample size of 200
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Z ~t or Z~t,; or Z~-LN {0, 1) or Z~t,,

where, N = normality, t,= t-distribution with V degree of
freedom, LN = Log normal.

RESULTS AND DISCUSSION

Apart from the parameter setting in the DGP, selected
studies of the paramete settings (W, «, B) = (0.1, 0.15,
0.85) and (W, e, B) = (0.1, 0.25, 0.65) due to Lumsdain
(1995) as well (W, ¢, B) = (1, 03,06)and (W, ., B) =
(1,0.05,0.9) due to Yi-Ting (2002) where also studied and
the results obtained are in agreement with the result
obtamed from detail studies of the DGP. The results
obtained from the DGP are shown in Table 1.

Table 1 shows the result under a sample size of 200
data points. The Table 1 reveals that the estimates are
poor for QMLE and ABE. However, on the bases of the
Adkate Information Criteria (ATC), the QMLE performed
better than the ABE except under log normal distribution
where ABE performed better than the QMLE.

A study of Table 2 showed that the estimates are
better although still poor. The performance bridge
between QMLE and ABE 1s closing. This can be seen
from the AIC of QMLE and ABE under the different
probability distribution functions except in the case of the
log normality. Here and surpnisingly too the QMLE

Method of estimation
OMLE ABE
Estimates W o B AIC W o B AIC
T(5) 0.16 0.010 0.77 -70.90 1.140 0.016 0.74 65312
T (10 0.14 0.014 0.76 -140.36 1.138 0.012 0.75 -124.31
T (15) 0.15 0.170 0.76 -169.40 1.420 0.016 0.76 -157.21
LN{0,1) 9.30 -0.200 0.86 129.17 6.200 0.200 0.81 108.23
Table 2: Performance rating of QMLE and ABE Estimates under a sample size of 500
Method of estimation
OMLE ABE
Estimates W o B AIC W 2 o AIC
T(S) 0.115 0.020 0.739 -132.341 0.15 0.025 0.73 -151.24
T (10) 0.018 0.034 0.742 -1021.220 0.21 0.029 0.74 -956.31
T(15) 0.170 0.036 0.750 -1973.420 0.20 0.030 0.75 -1472.40
LN (0.1) 6.790 -0.150 0.880 289.390 3.94 0.080 0.80 108.21
Table 3: Performance rating of QMLE and ABE estimates under sarmple size of 1000
Method of estimation
QMLE ABE
Estimates W o B AlC W 6 B ASC
T(S) 0.180 0.020 0.74 -137.12 0.19 0.03 0.73 -140.12
T (10) 0.193 0.029 0.75 -1141.62 0.22 0.03 0.74 -1094.72
T(15) 0.195 0.034 0.75 -1984.71 0.21 0.04 0.75 -1976.22
LN, 5.240 -0.400 0.86 119.72 3.50 0.07 0.79 101.13
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Table 4: Performance rating of QMLE and ABE estimates under sample size of 1,200

Method of estimation

QMLE ABE

Estimates W o B A/C W o B A/C

T (5) 0.150 0.030 0.760 -162.11 0.18 0.039 0.730 -173.70
T (1) 0.018 0.039 0.743 -1391.30 0.19 0.041 0.740 -1350.11
T (15) 0.190 0.043 0.746 -2441.30 0.19 0.044 0.742 -2430.39
LN, 4.300 0.080 0.810 168.59 348 0.060 0.780 256.23

method failed to show consistency. We also note that the
performance of the two method are enhanced under the
t-distribution as the degree of freedom mcreases. An
examination of Table 3 shows that both estimation models
that 13 the QMLE and the ABE have equal performance
ratings. However, the ABE has an edge 1n its performance
under t;, and LN (0,1) while QMLE has an edge under t;,
and t,5, The estimates under t,;5 and t,,; are close to their
true values for both estimation methods. Generally, the
two methods gave consistent estimates.

The result in Table 3 13 further confirmed by
examining Table 4 where the two methods have nearly
equal rating judging from the values of their AIC. This 1s
mspite of its very poor performance at the sample size of
200.

CONCLUSION

The study in this section shows that the ABE method
15 adequate n estimating GARCH model parameters and
can perform as well as the maximum likelihood estimate for
reasonable large data point when the distribution
assumption 1s miss-specified.

REFERENCES

Baillie, R.T., T. Bollerslev and H.O. Mikkelson, 1996.
Fractionally integrated generalized autoregressive
conditional heteroskedasticity. J. Econ., 74: 3-30.

Bollerslev, T., 1986. Generalized autoregressive
conditional heteroscedasticity. J. Econ., 31: 307-327.

Brooks, 1., S. Burke and G. Perssand, 2001. Benchmarks
and accuracy of the GARCH model estimation. Int. J.
Forecasting, 17: 45-56.

Engle, F. and G. Gonzalez-Revera, 1991. Semi parametric
ARCH models. T. Bus. Econ. Stat., 19: 3-29.

Engle, F., 1982 Autoregressive  conditional
heteroskedasticity with estimates of the variance of
UK inflation. Econometrica, 50: 987-1008.

111

Engle, R.F. and V.K. Ng, 1993. Measurement and testing
the impeact of news on volatility. J. Fin., 48: 1749-1778.

Eni, D. and E.H. Etuk, 2006. Parameter estimation of
GARCH models: An autocovariance approach.
Proceedings of International Conference on New
Trends m the Mathematical and Computer Sciences
with  Applications to Real World Problems,
(ICMCS’06), Covenant University Ota, Nigeria,
pp: 357-368.

Gosten, L., R. Jaganatan and D. Runkle, 1993. On the
relationship between the expected value and the
volatility of the nominal excess return on stock. J.
Fin., 48: 1779-1801.

Ling, S. and M. Mecaleer, 2003. Asymptotic theory for a
vector GARCH (1.1) quasi-maximum likelihood
estimator. Econ. Theory, 19: 280-310.

Lumsdain, R.L., 1995 Consistency and asymptotic
normality of the quasi-maximum likelihood estimator.
Econometrica, 64: 575-596.

McCullough, B.D. and C.G. Renfro, 1999. Bench marks
and software standard: A case study of GARCH
procedure. J. Econ. Social Measurement, 25: 59-71.

McLeod, A. and P. Sales, 1983. An algorithm for
approximate likelihood calculation of ARMA and
seasonal ARMA models. I. R. Soc. C: Applied Stat.,
32:211-223.

Nelson, D.B., 1991. Conditional heteroskedasticity in
asset returns: A new approach. Econometrica,
59: 347-370.

Weiss, A, 1986, Asymptotic theory of GARCH (1.1)
model. Econ. Theory, 2: 107-131.

Yi-Ting, C., 2002, On the robustness of ljung-box and
mecleed-li Q test: A simulation study. Econ. Bull,,
3:1-10.

Zakoian, T M., 1994. Threshold heteroskedastic models. T.
Econ. Dyn. Control, 18: 931-955.



