N=NDRUYA=NINE| Rescarch Journal of Applied Sciences 4 (1): 41-49, 2009

ISSN: 1815-632X
PUBLISHING © Medwell Journals, 2009

Introducing Object Oriented Programming in Tertiary Institutions:
Which Language Is Most Appropriate?

Godspower O. Ekuobase, Veronica V.N. Akwukwuma and Francesca A. Eghokhare
Department of Computer Science, University of Benin, Benin City, Nigeria

Abstract: Object Oriented Programming (OOP) has attained a level of acceptance in the software development
commumty so much so that one 1s now considered a charlatan to have a degree in computing without the flare
for OOP. Computing students must therefore, be equipped with this skill. The need to do this using the most
appropriate language 1s critical. We are not aware that any such language has been identified based on
scientific mstruments or parameters, except on mdividual opimon or affiliation. To this end, adopting the
enhanced Alexander’s scheme, we 1dentified and defined a set of criteria critical to the selection of the most
appropriate programming language for introducing students to Object-Oriented concepts and programming.
Furthermore, based on these criteria, we produced a rating showing the appropriateness of selected
programming languages to the teaching and learning of OOP.

Key words: OOP, teaching and learning, programming languages, selection criteria, indiviual opinion, affiliation

INTRODUCTION

It 1s true that computing 1s not programming but
programming, as we know, is to computing what leaven is
to bread. Is it any wonder that one cannot have a formal
degree in computing without taking and passing courses
i programming? The art of programming 1s often taught
using a particular programming language though with
the misconception on the part of some mstructors that
the skill called programming is the same as mastering a
programming lenguage or two. Several programming
languages abound and can be categorized in several
ways. One of such ways is the programming paradigm
they enforce or support. We have several programming
paradigms that are still active which include: functional,
modular, structured, object oriented, agile and open
sowrce (Ekuobase, 2006, Raccoon, 1997). Object-
oriented paradigm, though relatively new, has attained a
high level of acceptance in the software development
community so much so that one is now considered a
charlatan to have a degree n computing without some
good abilities in Object Oriented programming. Tt is
therefore, mmperative we equip computing students with
this skill.

Clearly, this can best be done using languages that
enforce or at least support OOP. These OOP languages in
existence are plentiful (Sebesta, 2008) and 1t 1s therefore,
not possible to use all of them. The question now is which
of the programming languages should be used to
introduce students to OOP? The answer is simple, the

most appropriate programming language. Using just any
(OOP) programming language will push us mto the
dilemma of the Flon (1975) axiom, which for example, in
the extreme any way, supports the use of assembly
language in distributed computing. We are not aware of
any work that has saientifically justified any programming
language as the best OOP language for teaching and
learming OOP peradigm. We are however, aware of
programming language evaluation criteria but often
frustrated by the lack of metric or scheme that will enable
us single out a particular language as the most
appropriate in a given context or domain, particularly, with
several alternatives.

This study identifies and defines a set of criteria for
choosing the most appropriate language for the teaching
and learning of OOP and adopted a rating scheme for it.
The adopted scheme is the enhanced Alexander scheme
(Onibere and Ekuobase, 2006; Ekuobase and Ombere,
2007) with the understanding that the problem of selecting
the most appropriate software process model for a given
software development project is similar in nature to our
research question. In particular, we produced a rating for
some selected programming languages using these criteria
with the adopted scheme. The rating shows the suitability
of these languages to the teaching and learning of QOP.
The programming languages selected were the
programming languages rated among the IT skills required
1in a tough job market: Java, C#, C++, C and Visual BASIC
(Prabhakar et al., 2003); since students are basically
trained for the job market.

Corresponding Author: Godspower O. Ekuobase, Department of Computer Science, University of Benin, Benin City, Nigeria

Res. J. Applied Sci., 4 (1): 41-49, 2009

This research assumes familiarity with these
programming languages as well as with the Object

Oriented paradigm.
OO0P LANGUAGE SELECTION CRITERTA

Based on available literatures, Parker et al. (2006),
Armmstrong (2006), Obasanjo (2005), Berge et al. (2005),
De Raadt et al (2003), Capretz (2003), Mclver (2002),
Meclver and Conway 1996), Ghezzi and Jazayeri (1998),
Howland (1997), Kolling ef al. (1995), Meyer (1993),
Schneider (1978), Stroustrup (1987) and Tharp (1982),
experience and consultations with selected programming
language experts, lecturers and students well grounded
mn at least one of our language of interest, we 1dentified
thirty five criteria that are critical to the choice of a
language for teaching and learming OOP. This final criteria
set is the result of scrutinized preliminary criteria set by a
team of programming language experts and semor faculty
members in the Department of Computer Science,
University of Benin and in one of the Information
Technology and Mathematical Modelling sessions of the
International Conference on Advances in Engineering and
Technology held in 2006 at Entebbe-Uganda. These
criteria, for ease of understanding and adaptation, are
partitioned into 4 categories, namely social-economic
attributes, methodology attributes, language attributes
and umiversality attributes. For example, to adapt this
scheme to, say, structured programming, all we need do is
to identify attributes peculiar to structured programming
methodology and use them as the methodology attributes
mstead; since the ones in this study are umque to OOP.
These attributes are discussed in the following
subsections and summarized in Table 1. We only describe
criterion values which otherwise are trivial, when their
meanings are ambiguous or not explicit.

Socio-economic attributes: These are the non-technical
characteristics of a programming language that have a
direct mnpact on the teaching and learning of that
language with no Software Development Methodology
(SDM) taking into consideration. These attributes and
their values are discussed below. They mclude: language
size, Familiarity, expressivity, compiler cost, compiler
availability, text availability, cost of textbooks,
Instructor’s expertise, ease of compilation and industrial
demand.

Language Size (C1): This is the size of the entire
programming language specification. Values are: VI =
(neghgible, small, moderate, large, very-large, extra-
large).

42

Familiarity (C2): By this we mean that the language uses
notations that are similar to existing and common
language notations. Values are: V2 = (none, slight,
moderate, sigmficant, substantial, extreme).

Expressivity (C3): How easily does the language allow
the programmer naturally express itself m the domain of
problem formulation? Values are: V3 = (intractable,
complex, restricted, simple, flexible, seamless).

Compiler cost (C4): This measures the mode of the cost
of the available standard compilers for the language.
Different vendors normally have different prices for their
products. Values are: V4 = (free, negligible, cheap,
affordable, outrageous). All proprietary
software 1s at best cheap.

expersive,

Compiler availability (C5): Here, we ask the question, are
the compilers for the language easy to come by? Values
are: V5 = (not available, scarce, limited, adequate, ample,
abundant).
Instructor’s (C6): This the
knowledge and experience of available instructor’s in a
given programming language. Values are: V6 = (novice,
comfortable, lknowledgeable, experienced, expert,
experienced-expert).

expertise measures

Cost of textbooks (C7): This measures the mode of the
cost of the standard textbooks or resource available for
the language. Values are: V7 = (free, negligible, cheap
affordable, expensive, outrageous).

Text availability (C8): This s the degree to which
standard accounts of a particular programming language
1s obtamable. Values are: V8 = (not available, scarce,
limited, adequate, ample, abundant).

Industrial demand (C9): Thus 1s the level of need or desire
for a particular programming language in the available
market (industry). Values are: V9 = (negligible, low,
moderate, substantial, very-high, extreme).

Ease of compilation (C10): Here, we measure the
convenience of language compilation i.e. how easy it is to
get the source code to the language compiler for
processing into a target code. Values are: V10 = (trivial,
simple, demanding, difficult, complex, intractable).

Methodology attributes: These are features very dear to
the Object Orented SDM (OO-SDM). They help
distinguish the OO-SDM from other SDM. Consequently,

Res. J. Applied Sci., 4 (1): 41-49, 2009

Table 1: Language selection criteria with 6 point values each

Function point values

Criteria Cij Vil Vi2 Vi3 Vid Vis Vi6
Language size Negligible Small Moderate Large Very-large Extra-large
Familiarity None Slight Moderate Significant Substantial Extreme
Expressivity Tntractable Coimplex Restricted Simple Flexible Seamless
Cornpiler cost Free Negligible Cheap Affordable Expensive Outrageous
Compiler availability Not available Scarce Limited Adequate Ample Abundant
Instructor’s expertise Novice Comfortable Knowledgeable Experienced Expert Experienced-expert
Cost of text books Free Negligible Cheap Affordable Expensive Outrageous
Text availability Mot available Scarce Limited Adequate Armple Abundant
Industrial demand Negligible Low Moderate Substantial Very high Extreme
Ease of compilation Trivial Simple Demanding Difficult Complex Intractable
Tnheritance support None Slight Moderate Significant Substantial Extreme
Suppoit for reuse None Slight Moderate Significant Substantial Extreme
Polymorphism support None Slight Moderate Significant Substantial Extreme
Modifier support None Negligible Significant Substantial Extreme Imposed
Class support None Negligible Significant Substantial Extreme Trmposed
O0AD suppoit None Slight Moderate Significant Substantial Extreme
GUI capability None Negligible Significant Substantial Extreme Imposed
Encapsulation support None Slight Moderate Significant Substantial Extreme
Exception handling capability None Slight Moderate Significant Substantial Extreme
Syntax cormplexity Trivial Simple Demanding Difficult Complex Tntractable
Orthogonality Indifferent Negligible Significant Substantial Extreme Imposed
I/O capability Trivial Simple Demanding Difficult Complex Intractable
Typing Mot typed Static Dynamic Flexible Weak Strong
Cornpiler capability Tnterprets slowly Interprets efficientty Flexibly slow Flexibly fast Compiles slowly Compiles efficiently
Support for user defined data types None Negligible Significant Substantial Extreme Enforced
Support for data structures None Slight Moderate Significant Substantial Extreme
Pointer capability None Negligible Significant Substantial Extreme Entorced
Usability of library finctions Harsh Slight Moderate Friendly Very friendly Seamless
Compilation support tools None Negligible Poor Moderate Substantial Excellent
Memory management features None Negligible Poor Moderate Substantial Excellent
Operating system support None Negligible Poor Moderate Substantial Excellent
Library capability None Negligible Poor Moderate Substantial Excellent
Networking support None Negligible Poor Moderate Substantial Excellent
Portability None Negligible Poor Moderate Substantial Excellent
Domain support. None Negligible Few Marny Most Any

how well a language enforces these attributes defines its
OO capacity. These attributes and their values are
discussed. They mclude mheritance support, support
for reuse, polymorphism support, modifier support,
support for class, Object Oriented Analysis and Design
(OOAD) support, Graphical User Interface (GUI)
capability, encapsulation support and exception handling
capability.

Inheritance support (C11): Our mterest here is how
the language supports the concept of
mheritance. Values are: V11 = (none, slight, moderate,
significant, substantial, extreme). We say it is extreme if

well

the language specification makes i1t mtractable for
programmers to do without the attribute when using
the language.

Support for reuse (C12): Ease of adapting existing
program or program segments to new goals. Values are:
V12 = (none, slight, moderate, significant, substantial,
extreme).

43

Polymorphism support (C13): How well the language
supports the concept of polymorphism. Values are: V13 =
{(none, slight, moderate, sigmficant, substantial, extreme).

Modifier support (C14): A common element of the OOP
languages 1s the presence of access modifiers, mdicating
different levels of class encapsulation. Values are: V14 =
(none, negligible, substantial, extreme,
imposed).

sigmificant,

Class support (C15): How well the language supports the
class concept. Values are: V15 = (against, negligible,
significant, substantial, extreme, imposed).

OQO0AD support (C16): How well the language
supports the view that everything is an object. Values are:
V16 = (none, shght, moderate, sigmficant, substantial,
extreme).

GUI capability (C17): The features in the language
which allow programmers to easily and flexibly build
programs with graphical interfaces that aid quite

Res. J. Applied Sci., 4 (1): 41-49, 2009

significantly the usability of the program. Values are:
V17 = (none, negligible, significant, substantial, extreme,
imposed).

Encapsulation support (C18): This is the ease and
flexability of using/bwilding objects property and
functionality in a language without any prior knowledge
about the objects detail. Values are: V18 = (none, slight,
moderate, sigmficant, substantial, extreme).

Exception handling capability (C19): The features or
constructs in the language that allow a programmer to
easily and flexibly handle exception thereby making
programs more robust. Values are: V19 = (none, slight,
moderate, significant, substantial, extreme).

These the technical
characteristics of a programming language that have a
direct impact on the learning and teaching of the language
without any consideration for a particular SDM. These

Language attributes: are

attributes and their values are discussed. They include
/O complexity,
construct reliability, typing, compiler capability, support
for user defined data types, support for data structures,
pointer capability, restricted aliasing, usability of library

syntax complexity, orthogonality,

function, compilation tool support and memory

management feature.

Syntax complexity (C20): This criterion assesses the
mtricate details mvolved in the rules governing which
statements and combimations of statements m a
programming language will be acceptable to a compiler for
that language. Values are: V20 (trivial, simple,

demanding, difficult, complex, intractable).

Orthogonality (C21): This measures how well the
language resists actions that can generate side effects in
programs. Values are: V21 = (indifferent, negligible,
significant, substantial, extreme, imposed). We say it is
umposed when programmers cannot write code with side
effects in the language i.e. this attribute is forced on the
programmer in the language.

1/0 complexity (C22): This criterion describes the ease
and flexibility with which a programmer can accept
input data into a program. Values are: V22 = (trivial,
sinple, demanding, difficult, complex, intractable).

Typing (C23): Here, we measure both the nature and
degree of typing of a programming language. Values are:

44

V23 = (not typed, static, dynamic, flexible, weak, strong).
We say 1t 18 flexible when it binds both statically and
dynamically.
Compiler capability (C24): This the
nature and efficiency of a compiler. Values are: V24 =
(interprets slowly, mterprets efficiently, flexibly slow,
flexibly fast, compiles slowly, compiles efficiently).
Flexibility here having both mterpretation
and compilation capability. For example, interprets

measures

mears

efficiently will be ideal for teaching and leamning any
language.

Support for user defined data types (C25): This criterion
measwres the degree to which a programmer can define
his own data types to aid better expressivity in
programming.

Values are: V25 = (none, negligible, sigmficant,
substantial, extreme, enforced).

Support for data structures (C26): This criterion deals
with the ability of a language to support a variety of data
values such as integers, strings, real, set, list etc. Values
are: V26 = (none, slight, moderate, significant, substantial,
extreme).

Pointer capability (C27): This criterion measures the
ease and flexibility with which programmers can use
indirect methods in accessing memory. Values are: V27 =
substantial,

(none, negligible, sigmficant,

enforced).

extreme,

Usability of library functions (C28): This measures the
degree to which the library functions can be conveniently
put to use. Values are: V28 = (harsh, slight, moderate,
friendly, very-friendly, seamless).

Compilation tool support (C29): Here, we are mterested in
the compiler support tools such as debuggers and lexical
analyzers n most of the available language compilers.
Values are: V29 = (none, negligible, poor, moderate,
substantial, excellent).

Memory management features (C30): This measures the
language features or capabilities that allow programmers
make efficient use of computer memory.

are V30 (none, negligible,
moderate, substantial, excellent). Excellent here means that
memory management is done automatically by the

Values poor,

compiler.

Res. J. Applied Sci., 4 (1): 41-49, 2009

Universality attributes; These are tools or technology
that support or are supported by a given programming
language that encourage a wide spread acceptability,
applicability or use of the language. These attributes and
their values are discussed below. They include operating
system support, library capability, networking support,
compilation tools support, portability and domain

support.

Operating systems support (C31): This criterion
describes the degree to which a compiled program in
programming language can switch between several
operating system platforms. Values are: V31 = (none,
negligible, poor, moderate, substantial, excellent).

Library capability (C32): We want to ask ourselves, how
equipped 1s the programming language library. Values are:
V32 = (none, negligible, poor, moderate, substantial,
excellent).

Networking support (C33): How well does the language
support network (LAN and WAN) programming. Values
are: V33 = (none, negligible, poor, moderate, substantial,
excellent).

Portability (C34): This criterion describes the degree to
which an executable program n programming language
can switch between several hardware platforms. Values
are: V34 = (none, negligible, poor, moderate, substantial,
excellent).

Domain support (C35): Here, our interest is the number
of problem domain the programming language can
be effectively and convemently used. It measures
the degree of versatility of a programming language.
Values are: V35 = (none, negligible, few, many, most,
any).

The Alexander’s scaling scheme: The Alexander’s
scaling scheme as presented in Onibere and Ekuocbase
(2006) 1s as follows:

Step 1: Examine the project’s attributes and determine
S1y"s for each criterion that best describe the project.

Step 2: For each process model, compute:

Rating = ii(suxau) (1)

i=l i=1

45

Thus, for the modified scheme (Onibere and
Ekuobase, 2006) we have:

Rating = ij(sﬂ Xay) (2)

i=1l i=1

Step 3: The process model with the highest RATING
1s the best choice, 2nd highest 1s the 2nd best choice,
ete.

The notations used were as used n Ombere and
Elkuobase (2006):
C The set of 20 criteria with elements C,, 1 =1.20 and
1.27 for the Alexander and modified set of criteria,
respectively
V, = The ordered vector of elements V ;of values that
each criterion C; may take on e.g. for the modified
set of criteria, V11-V16 have values novice,
knowledgeable, experienced, well-experienced,
expert and experienced expert, respectively
A binary indicator of which value of criterion Ci
applies to the particular project. The 5,’s form a
project characteristics matrix that reflects the
attributes of a project
The applicability of a process modeltoa V, e.g. a
26 = 1 for Waterfall model indicates that the
process 1s appropriate for projects having users
with descriptive ability to express needs. The aij’s

a;

for each process model form a matrix used to
determine the rating of a process model with
respect to a particular project

To adapt the enhanced scheme to our case, we have,

Step 1: Examine the attributes for the teaching and
learming of OOP and determine S1j’s for each criterion that
best describe it.

Step 2: For each programming language, compute:

35

Rating = Zi (S;xay)

i=1i=1

3)

Step 3: The programming language with the highest
RATING 18 the best choice, 2nd highest 1s the 2nd best
choice, etc. Where the following notations hold as
follows:

C = The set of 35 criteria with elements C1,1=1..35

Res. J. Applied Sci., 4 (1): 41-49, 2009

f The ordered vector of elements V; of values
that each criterion Ci may take on e.g., for this
set of criteria, V11-V16 have values negligible,
small, mo-derate, large, very-large, extra-large,
respectively

A binary indicator of which value of criterion Ci
applies to the teaching and leaming of OOP. The
Sy’s form a project characteristics matrix that
reflects the attributes of this task

The suitability of a programming language toa Vi
e.g., a65 =1 for C indicates that the language is
suitable for the teaching and learning of OOP if the

college have an instructor that 1s an expert m C

a,

programming. The aij’s for each programming
language form a matrix used to determine the
rating of a programming language with respect to
the teaching and learning of OOP

Selection matrices: This study contains the standard

template that best describes the criteria values for

teaching and learning QOP in an introductory class
(Table 2), as well as those of the 5 selected languages
(Table 3-5). Known experts m the mdividual languages
and some selected students of the Department of
Computer Science, Umversity of Benin and Computer and
Information Technology Department of Bowen University
both in Nigeria were consulted separately and the Table
3-5 are a reflection of popular evaluation (1.e., we took the
choice mode).

In doing this, we were driven by the ease of teaching
and learning OOP concepts and programming, within the
time frame of a semester (4 h of teaching) to computing
students of University of Bemun and Bowen University
with no prior programming skills or experience.

The next step, called the matching process, defines
the appropriateness of a given process model to a given
project. This 1s done by computation using the Eq. (3). If
this is done correctly, simple percentage (Rating *
100/max. Rating) for each selected programming language
will give a nod to the values in Table 6.

Table 2: Selection matrix for teaching and learning OOP in University of Benin (UNIBEN), Nigeria

Criteria Vil Vi2 Vi3 Vid Vis Vié
Language size 0 1 1 0 0 0
Familiarity 0 0 0 1 1 1
Expressivity 0 0 1 1 0 0
Cornpiler cost 1 1 1 0 0 0
Compiler availability 0 0 0 1 1 1
Instructor’s expertise 0 0 0 0 1 1
Cost of text books 1 1 1 0 0 0
Text availability 0 0 0 1 1 1
Industrial demand 0 0 0 1 1 1
Ease of compilation 1 1 0 0 0 0
Tnheritance support 0 0 0 0 0 1
Support for reuse 0 0 0 0 0 1
Polymorphism support 0 0 1 1 0 0
Meodifier support 0 0 1 1 1 0
Class support 0 0 0 0 0 1
OOAD support 0 0 0 0 0 1
GUI capability 0 1 1 1 1 0
Encapsulation support 0 0 0 1 1 1
Exception handling capability 0 0 0 1 1 0
Syntax complexity 1 1 0 0 0 0
Orthogonality 0 0 0 0 1 1
I/O capability 1 1 0 0 0 0
Typing 0 1 0 0 0 1
Cornpiler capability 1 1 1 1 0 0
Support for user defined data types 0 0 0 1 1 0
Suppoit for data structures 0 0 0 0 1 1
Pointer capability 0 0 1 1 0 0
Usability of library finctions 0 0 0 0 1 1
Compilation support tools 0 0 0 1 1 1
Memory management features 0 0 0 0 1 1
Operating system support 0 0 0 0 1 1
Library capability 0 0 0 0 1 1
Networking support 0 0 0 0 1 1
Portability 0 0 0 0 1 1
Domain support. 0 0 0 1 1 1

46

Res. J. Applied Sci., 4 (1): 41-49, 2009

Table 3: Selection matrices for teaching and leaming OOP using C# and visual basic in UNIBEN, Nigeria

C# Visual basic
Languages
criteria Vi V2 V3 V4 \Al V6 Vi V2 V3 V4 \Al V6
Language size
Familiarity
Expressivity

Compiler cost

Cormpiler availability
Tnstructor’s expertise

Cost of text books

Text availability

Industrial demand

Ease of compilation
Inheritance support

Support for reuse
Polymorphism support
Modifier support

Class support

OOAD support

GUI capability
Encapsulation support.
Exception handling capability
Syntax cormplexity
Orthogonality

1/0 capability

Typing

Cornpiler capability

Support for user defined data types
Suppoit for data structures
Pointer capability

Usability of library finctions
Compilation support tools
Memory management features
Operating system support
Library capability
Networking support
Portability

Domain support

C OO DO DO DO DO DO DO DO DO OOOOCOODO0O OO OO0
SO0 oo OO OO OO OoORE OO0 o000 OoO0OOFRRO OO0 o
C OO OHF OO OHF OO DO 0O OO0 OOOOO OO0 OOHOOO
OCF O OO0 DO DO DO F O OO F OO OOCOOFOOO0O0 OO0 O
o OO O~ O -H OO O~ OOOoO- o0 0000 O o000 o0
S OoOFR~,O o000 00000000 OOoOREOOoOFROOOo 0000 o0
C OO DO DO DO DO DO DO DO ODODOOCOOOO MO OO0O OO0 000
C OO0 OHF OO O OO OO FOFOODOF OO OOO0O0 OO0 000

(==l e« lelo e == a Nl o=l o= ol o= =R =R ==l o i e R e Rl = o e R R

== O SO OC OO H O OO oOOF OO OO OO0 OFFOFR OO0

COFHFF O OO F O OO0 OHFOHFEFODOOOOO0O OO OO0 OO0 O

o0 oOOoO—H OO OO OO0 oCOOoOROOoOOoO0 000000000 o0

Table 4: Selection matrices for teaching and learning OOP using C++ and Java in UNIBEN, Nigeria

CH Java
Languages
Criteria V1 V2 NE V4 VS V6 V1 V2 V3 V4 VS V6
Language size
Familiarity
Expressivity

Compiler cost
Cormpiler availability
Instructor’s expertise
Cost of text books
Text availability
Industrial demand
Ease of compilation
Tnheritance support
Support for reuse
Polymorphism support
Modifier support
Class support

OOAD support

GUI capability
Encapsulation support
Exception handling capability
Syntax complexity
Orthogonality

I/O capability

Typing

Compiler capability
Suppoit for user defined data types

[=J =l a o= o el ol =R =R =l e e e e e e e i e]
S OO0 0000 00O o000 0C00 oo
SO OO O OO OO0 OO0 OOOOOOH OO OO
SO OO OO OO O OO O~OOO
O OO OO oo OO O~ OO0 00 00000
[=3 =R = =i el e el e el elle s N o o= o = = =]
[=R =l ooBololoNoBolol ool =Ne ool ool ool ool ol ol
SO OO0 OO0 OO0 OO0 OO OO OOOH O OO

O O OO OO0 OO0 OO OO O OOO~OO

[l ==l ol = i o el o = == e e e e e e B e i i]

SO OO O OOOF OO O0OOoO0OOO0O OO0

SO O OO OO OO~ OOOOO OO OO O

47

Res. J. Applied Sci., 4 (1): 41-49, 2009

Table 4: Continue

CH Java
Languages
criteria Vi V2 V3 V4 Vs V6 Vi V2 V3 V4 Vs V6
Suppoit for data structures 0 0 0 0 0 1 0 0 0 0 1 0
Pointer capability 0 0 0 0 1 0 0 1 0 0 0 0
Usability of library functions 0 0 1 0 0 0 0 0 0 1 0 0
Compilation support tools 0 0 0 0 1 0 0 0 0 0 1 0
Memory management features 0 0 1 0 0 0 0 0 0 0 0 1
Operating system support 0 0 0 0 1 0 0 0 0 0 1 0
Library capability 0 0 0 0 0 1 0 0 0 0 0 1
Networking support 0 0 0 0 1 0 0 0 0 0 1 0
Portability 0 0 0 1 0 0 0 0 0 0 1 0
Domain support 0 Q 0 1 Q Q 0 0 Q Q 1 Q
Table 5: Selection matrices for teaching and learning OOP using C in UNIBEN, Nigeria

C

Languages
Criteria Vi V2 V3 V4 V5 V6
Language size
Familiarity
Expressivity

Compiler cost

Compiler availability
Tnstructor’s expertise

Cost of text books

Text availability

Industrial demand

Ease of compilation
Inheritance support

Suppoit for reuse
Polymorphism support
Modifier support.

Class support

OOAD support

GUI capability
Encapsulation support.
Exception handling capability
Syntax cormplexity
Orthogonality

I/O capability

Typing

Cornpiler capability

Support for user defined data types
Support for data structures
Pointer capability

Usability of library functions
Compilation support tools
Memory management features
Operating system support
Library capability
Networking support
Portability

Domain support

OO0 OO0 OO OO0 0O HFFEODRFOFEFOFEFOOODOOO OO
OO0 OO0 OO0 OO0 OHOORF OO0 O0CO OO OFOOOOOFO OO

SO0 oOOR OO0 OO OFRH O, OO0, OO0OO O EDO OO
[l ==l e ool ==l oo lol= o= o oo Re e oo Bel=N= el A =R=0 R N
O OO FEOMFEFEMFEFODODODO OO0 ODO0CO OO0 OO OO0 OCOO OO
(==l ol o e Na o N =l =R === =l e e iR el e e el e ol el elel o)l

Table 6: Suitability of languages in teaching and leaming OOP in an
introductory level

Language Rank (%) Position

C# 77.1 1st

Java 74.3 2nd

C++ 57.2 3rd

Visual basic 54.3 4th

C 45.7 5th
RESULTS AND DISCUSSION

From Table 6, it is obvious that none OOP languages
are mappropriate for teaching and learmng OOP and that
a pure OOP language is an excellent choice in the teaching

and learning of OOP. Furthermore, our experiment shows
that C# is the most appropriate Object Oriented
Programming language for teaching and learning QOP in
an mtroductory programming class.

During the course of this research, many of our
consultants wondered why C was selected at all to be
considered for the experiment. We always replied that it
will help show the weakness of our selection procedure.
For example, if the result from the experiment rated the C
language above, say, C++ then it would have been a
funny result. Clearly, our result shows that the selection
scheme is strong and reliable.

Res. J. Applied Sci., 4 (1): 41-49, 2009

Very importantly, C# is expected to do better in the
more developed countries of the world since it fell to Java
particularly mn Criterion 8 and 9 i Nigeria. This may not
likely be the case m the United States or m Europe and
this is capable of increasing the suitability rating of C# by
up to 5.7% in these environments.

CONCLUSION

A scheme now exists for choosing the most
appropriate programming language for teaching and
learning OOP in tertiary institutions. Tt is the duty of
Faculty in consultation with students and experts in
programming languages, OOP in particular, to determine
the various matrices in making a choice for their
mstitutions. This may not necessarily be done annually.
Owr result shows that core OOP languages are the most
appropriate language for teaching and learning OOP; with
C# standing out for both the new and the old universities
in Nigeria.

RECOMMENDATIONS

Consequently, we wish to recommend that efforts be
put into making C# more attractive to the academia than
it 15 presently emoying m Nigeria m the form of
availability of test, staff traming and curriculum
development.

ACKNOWLEDGEMENT

We are indeed grateful to the academic and
programming staff of Computer Science Department,
University of Benin and CIT Department, University of
Bowen for their assistance in building the selection
scheme’s mput data (1.e. Appendix). To members of the
Information Technology and Mathematical Modelling
session of the conference on Advances in Engineering
and Technology held i Entebbe-Uganda, July 2006 who
helped m the scrutiny of the selection criteria, we cannot
thank you enough.

REFERENCES

Armstrong, D., 2006. The quarks of object orented
development. Commun. ACM, 49 (2): 123-128.
Berge, O., R.E. Borge and A. Fjuk, 2005. Learning Object
Oriented Programming. http: /www.ifi.uio.no.
Capretz, L.F., 2003. A brief history of the object-oriented
approach. ACM Soft. Eng. Notes, 28 (2): 1-10.

De Raadt, M., R. Watson and M. Toleman, 2003.
Introductory Programming Language at Australian
Universities at the beginning of the 21st century. T.
Res. Pract. Inform. Technol., 35 (3): 163-167.

49

Ekuobase, G.0., 2006. Software Creative Milestones,
International Conference on Advances in
Engineering and Technology (AET). Entebbe-
Uganda, Elsevier, pp: 848-855.

Ekuobase, G.0. and E.A. Ombere, 2007, Software Process
Selection Criteria i Perspective. Int. J. Phys. Sci,
2(3): 81-89.

Flon, I.., 1975, On research in structured programming,.
ACM SIGPLAN Notices, 10 (10): 16-17.

Ghezz, C. and M. Jazayeri, 1997. Programming Language
Concepts. 3rd Edn. NY: John Wiley and Sons,
pp: 448.

Howland, T.E., 1997. Tt’s all in the Language: Yet another
look at the choice of programming language for

teaching computer science. J. Comput. Small
Colleges, 12 (4): 58-74.
Kollmg, M., B. Koch and J. Roseenberg, 1995.

Requirements for a 1st year object oriented teaching
language. ACM SIGCSE Bull,, 27 (1): 173-177.
Meclver, L., 2002. Evaluating languages and environments
for novice programmers. Proc. of 14th Annual
Meeting of the Psychology of Programming Interest

Group, London, pp: 100-110.

Mclver, L. and D.M. Conway, 1996. Seven deadly sins of
introductory programming language design. Proc.
Software Engineering: Education and Practice, CA:
USA. TEEE Computer Society Press, pp: 309-316.

Meyer, B., 1993. Towards an object oriented curriculum.
I. Object Oriented Program., 6 (2): 76-81.

Obasanjo, D., 2005. A comparison of Microsoft’s C#
Programming Language to Sun Microsystems Java
Programming Tanguage. http://www.25hoursaday.
com/CsharpVsJavahtml.

Onibere, EA. and G.O. Ekuobase, 2006. Enhanced
Software Process Selection Criteria. J. Inst. Math.
Comput. Sei., 17 (1): 17-32.

Parker, KR., T.A. Ottaway and I.T. Chao, 2006. Criteria
for the Selection of a programming language for
introductory courses. Int. J. Knowledge Learning,
2(1 and 2): 119-139.

Prabhakar, B., CR. Litecky and K. Arnette, 2005. I'T Skills
m atough job market. Commun. ACM, 48 (10): 91-94.

Raccoon, 1..B.S., 1997. Fifty years of Progress in Software
Engineering, Software Engineering Notes. ACM
SIGSOFT, 22 (1) 88-104,

Schneider, G.M., 1978 The mtroductory programming
course in computer science: Ten principles, ACM
SIGCSE Bull, 10(1): 107-114.

Sebesta, RW., 2008. Concepts of Programming
Languages. 8th Edn. Addison-Wesley.

Stroustrup, B., 1987. What is Object Oriented
Programming? Springer-Verlag. Lecture Notes
Comput. Sci. Series, 276: 51-70.

Tharp, A.L., 1982. Selecting the ‘right’ programming
language. ACM SIGCSE Bull, 14 (1): 151-155.

