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Abstract: A computational mvestigation has been carried out in the field of non-relativistic charged-particle
optics using the charge density method as a boundary value problem with the aid of a perscnal computer under
the absence of space-charge effects. This research has been concentrated on designing a non-equidiameter
electrostatic immersion lens whose electrodes are cylindrical in shape separated by an air gap. The variable
parameter of the 2 electrodes 1s the applied voltage ratio. The axial potential distribution of an electrostatic
immersion lens has been computed by taking into consideration the distribution of the charge density due to
the voltages applied on the 2 cylindrical electrodes. Potentials have been determined anywhere m space by
using Coulomb’s law. The optical properties of the immersion lens have been investigated under finite and zero

magnification conditions.
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INTRODUCTION

The charge density method for solving Laplace’s
equation was first applied in electron-optical systems by
Cruise and Cruise (1963). He computed the potential
distribution in an axially symmetric electrostatic lens,
which contained no insulators. This method 1s based on
a simple fact that in the static case any region occupied
by a conductor 1s free of field. If potentials are applied on
the conductors (e.g., electrodes) the charges distribute
themselves on the surfaces which become equipotentials.
This 1s equivalent to forcing definite charge distribution
on the electrode (Renau et al, 1982). These charge
distributions are considered to be the sources of the
electrostatic potential distribution 1 the space
surrounding the electrodes including the electrode
potentials themselves. If the electrode potential can be
replaced by these surface charge distributions on the
electrodes, the value of the potential may be easily
calculated anywhere in the space by simply using the
superposition principle without employmng any
sophisticated computational grids as in the finite-
difference or fimte-element methods (Harting and Read,
1976, Mautz and Harrington, 1972; Van Hoof, 1980).

This method has been found to give accurate results,
efficient in the use of computer time and storage and
applicable to a wide range of lens configurations. The
charge density method is a particular example of Boun-
dary Element Method (BEM). In most of the published

research the lenses that are used for thus purpose have
been divided into N-rings; these rings are of variable
width and are made narrower near the gap, where the
charge density changes most rapidly (Mautz and
Harrington, 1972, Fung, 1998). However, in the present
research the system of cylinders under applied potential
has been replaced by a system of charged rings, which
have the same width as illustrated in Fig. 1.

Three of the various magmfication conditions that are
well known in electron optics have been taken into
account in the present research, namely, the infinite, finite
and the zero magnification conditions due to their
resemblance to the trajectory of charged particles
traversing a lens field. Because of the complex nature of
the present problem under investigation, the following
assumptions have been made the thickness of the material
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Fig. 1: Replacing a series of cylinders under applied
potentials with a series of charged rings (6)
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from which the lenses should be constructed is negligible
compared to the radii of the cylinders. The space charge
effects are neglected m order to satisfy exactly the
Laplace’s equation V¢ = 0 and Non-relativistic velocities
for the accelerated charged particles have been taken into
consideration.

MATERIALS AND METHODS

The 1st step in the present method for calculating the
axial potential distribution of a 2-cylinder electrostatic lens
is to find the charge density on each surface of the
conducting sheets from which the lens is constructed.
In the absence of dielectrics the electrostatic potential at
any pomnt in space 1s determined by the free surface
charges on the conductors in the space (Read et al,
1971).

The 2nd step is, therefore, to use the determined
charge density for computing the potential distribution in
the space of the lens. In applying this method for non-
equidiameter coaxial cylinders separated by a fimte
distance G, it has been assumed that the cylinder walls
have negligible thickness so that the potential in regions
which are not very close to the cylinders is determined
simply by the algebraic sum of the inner and outer charge
sheets (Bomjour, 1980). To solve the problem, the
cylinders have been divided mnto N rings; each ring carries
a charge Q, (1=1, 2, 3, ..., N), which contributes to the
potentials of all the rings (Fig. 2). The potential of the ith
ring can be expressed as a combination of the
contributions from all charged rings (Fung, 1998).
Comnsider the lens cylinders shown in Fig. 2 of radii 1, for
the 1st electrode, 1, for the second electrode and length 20
r; (Mulvey and Wallington, 1973). The combined charge
densities on the surfaces of the cylinders are:

01 = Q1/TE (r1+ rZ) AZI
where:

Az

The width of ith ring

If there are no other charges present then the
potential at any point z in space is given by,

ol
Ulr,,z) = LZlelK(klz)Azl (1)
e

a 1=l
j#i

Where:
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and K (k%) is the complete elliptic integral of the first kind,
which can be evaluated by the use of the following
polynomial approximation (Szilagyi, 1988),
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Fig. 2: Simple coaxial 2-cylinder lens consisting of a large
mumber of circular strips in order to obtain the
potential distribution by CDM

Kk)=a,+aH+aH+aH +aH +
(b, +bH+b,H*+ b,H’ + b, H* )Y In (1/H)

(2)

where, H =1-k’, which is a dimensionless factor.

The potential V, at a pont C n Fig. 2 on the ith
element 13 due to a constant charge density ¢ on each
element, which is uniformly distributed around a circle of
radii 1, r,. The potential V, is given by the following

expression (Harting and Read, 1976),

(3)

where:
A, = Asquare matrix element
The above set of Eq. 3 may be reduced to the
following simple matrix equatiomn:
Ao (4
The charge density o 1s mathematically considered a
column vector. In applying this procedure to the cylinder
problem one may take different values of the voltage
applied on the 1st and 2nd electrodes, the column vector
0 is then obtained by inverting the matirx (Renau et al.,
1982; Mautz and Harrington, 1972). Hence, from Eq. 4,
o=A"'V (5)
In the present research, an iterative procedure is used
to get the nverse of matrix A with the aid of a computer

program based on LU-Factorization method (Kolman,
1983). To evaluate the elements of A one needs to know
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the }.)otent.ial at thc.a s.trip ] caus.ed by a unifqnn .charge Uty sy
density o; in the Stl?lp 1. The matrix element A 1s given by SRR N + ol T + vt (8)
(Mulvey and Wallington, 1973), Cs= o , . UR"dz
1R M[UJ R _3(UNVR?
k. Az 3lU ) R O2LU R
A=Kk, (6)
g,
) U1f2 Zi UI ) U»v ,
Where: Co=—p [| ==RR+-—R"|[U"dz (©)
e - Lt R? 1| 20 4U

J [(r1 +,) + (7 72)2}}/2
where, U = U (z) is the axial potential, the primes denote
derivative with respect to z and U, = U (z) 18 the potential
at the image where z = z. The integration given in the
Eq. 8 and 9 are executed by means of Simpson’s rule
(Szilagyi, 1988; Hawkes, 1980). Inthe present research,
Eq. 8 and 9 have been used for computing Cs and Cc in
the image side under various magnification conditions.

and

Z]i:Z —Z

% and z, bemng the mid point of the ith and jth ring
respectively; they are givenby 7, = (z,, +z,)2and z, =
(2., + z.,)/2. It should be noted that when j is equal to 1 the
elliptic mtegral (Eq. 2) will be mfinite and a smgularity in
the potential V is caused but not in A, itself.

RESULTS AND DISCUSSION

The charge density and the corresponding potential
distributions at various values of the optical considerably
along the surface of each electrode as shown in Fig. 3 and
4 under accelerating mode of operation The air gap
between the 2 non-equidiameter cylindrical electrodes is

The equations of motion of a charged particle defined in Fig. 1. The voltages applied on the electrodes
traveling at a non-relativistic velocity in an electric field are V1 = 10V and V2 = 18V. Due to the limited number of

THE TRAJECTORY EQUATION AND
LENS ABERRATION

near the axis of a cylindrically symmetric system can be elements of the matrix A each electrode has been divided
reduced to the following paraxial ray Eq. 7 (Grivet, 1972; into ten equal rings The charge density distribution due
Paszkowski, 1968), to the varies applied voltages on the electrodes region
each point on the graph represents a uniform charge

dR U dR U (7) density for a particular ring. The voltage applied on the

E+ U dz * o 0 electrode positioned at the right-hand side of the air gap

greater than that on the left-hand side. Within the air gap
where, 1" and U" are the lst and 2nd derivatives of the there 13 ne charge density dl_le to the r.ings situated at the
two terminals of each cylinder, which are at a close
proximity to air. Furthermore, the ratio of the charge
density on the terminal ring at the lower voltage found to
be equal to 1.8, which is the ratio of the voltages applied
on the 2 electrode. It must be made clear that even at
higher applied voltages the above mentioned charge
density ratio still equals to the applied voltage ratio.

The axial potential distributions at various values of
the optical axis are shown in Fig. 4. This is a field-free
region when E (7) = 0 out side the lens boundaries These
potentials are similar in their general form. The potential U
and Ce¢ are normalized in terms of the image side focal (7) at point (7 = 0.0) equals to 15.5 V, this value does not
length, ie., the relative values of Cs/fj and Cc/f, are represent the average of the potentials applied on the 2

axial potential U, respectively. R represents the radial
displacement of the beam from the optical axis z and the
primes denote a derivative with respect to z.

The most important aberrations in an electron-optical
system are spherical and chromatic aberration. Thus the
present reserach has been focused on determiming these
2 aberrations for an immersion electrostatic lens operated
as an objective lens. The spherical and chromatic
aberration coefficients are denoted by Cs and Ck,
respectively. In the present investigation the values of Cs

mvestigated as figures of merit, which are dimensionless. electrodes because the field shifted to the electrode,
The spherical aberration coefficient Cs and the which has a radius less than the radius of the 2nd

chromatic aberration coefficient Cc referred to the electrode.

image/object side are calculated from the Eq. 8 (Szilagyi, The electron beam path along the electrostatic lens

1988, field under zero magnification condition and accelerating
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Fig. 3: The charge density distribution on 2 electrodes at
different values of the voltage ratio (V2/V1 =1.8,
2-5)
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Fig. 4: The axial potential distribution on the 2 electrodes
(r,, 1,) under accelerating mode of operation

mode of operation has been considered. Figure 5 shows
the trajectories of an electron beam traversing the
electrostatic lens field at various values of both voltage
ratios V2/V1. These trajectories have been computed with
the aid of Eq. 7 taking in to account that the total length
of the 2 electrodes (L =20 mm) the air gap (G = 1 mm) and
the radius (r;= 0.5 mm) and radius (r, = 1 mm) the 2 non-
equidiameter cylindrical electrode are kept constant.
Computation have shown that as the beam emerges from
the lens field it converges towards the optical axis
provided this is due to the increase of the voltage ratio.
The trajectories are generally similar in their form.

The electron beam path along the electrostatic lens
field under finite magnification condition and accelerating
mode of operating has been considered. Figure 6 shows
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Fig. 5: The electron beam trajectory in an electrostatic
lens under zero magnification condition at various
values of the voltage ratio (V2/V1=1.8, 2-5)
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Fig. 6: The electron beam trajectory in an electrostatic
lens under finite magnification condition at
various values of the voltage ratio (V2/V1=1.8, 2-5)
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the trajectories of an electron beam traversing the
electrostatic lens field at various values of both voltage
ratios V2/V1. These trajectories have been computed with
the aid of Eq. 7. The value of the trajectory slope at object
position highly affects the magnification. These
trajectories are similar in their general form. Further more,
the radial displacement of the beam increase with
increasing voltage ratio at values of (V2/V1=1.8,2,3,4,5)
trajectories have across over within the air gap region.

Figure 7 shows the trajectories of an electron beam
transverse the electrostatic lens field at various values of
V2/V1. These trajectories have been computed with the
aid of Eq. 2-7. It is seen that as the voltage ratio V2/V1
increase the R (z) is decreases.
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Fig. 7: The electron beam trajectory in an electrostatic
lens under infinite magnification condition at
various values of the voltage ratio (V2/V1 =1.8, 2-5)
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Fig. 8: The spherical and chromatic aberration coefficients
under zero magnification condition

The spherical and chromatic aberration coefficients
have been given considerable attention in the present
research, since they are the 2 most important aberrations
in electron optical system.

Under zero magnification it is seen that as the voltage
ratios V2/V1 increases, the relative spherical aberration
coefficient Cs/f decreases but the relative chromatic
aberration coefficient Cc/f, respectively increasing
linearly. At (V2/V1 =8) the value of Cs/f, has a minimum
value equal (66.5079). When (V2/V1 =2) the value of Cc/f;
has a minimum value equal (3.048119) (Fig. 9).

Under finite magnification condition. The spherical
and chromatic aberration coefficient Cs and Cc,
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Fig. 9: The spherical and chromatic aberration coefficient
under finite magnification condition

LOE+5 o cog/s
=o—Cc/f
1.0E+4
1.0E+3
1.0E+2
—
—
1.0E+1 -
%\Q\GN
1.0E+0 T T ———
0.00 2.00 4.00 6.00 8.00
V2/V1
Fig. 10: The spherical and chromatic aberration

coefticients under infinite magnification condition

respectively have been normalized in terms of the
magnification M since in the finite mode of operation M
is more important than the focal length f. It is seen that as
the voltage ratios (V2/V1) increase. the relative spherical
aberration coefficients Cs/M are decreases. At the voltage
ratio (V2/V1 = §) the spherical aberration coefficients has
a minimum value equal (94.8507). While the relative
chromatic aberration coefficient Cc/M are increases with
increasing the voltage ratio V2/V1. At the voltage ratio
(V2/V1 = 1.8) the chromatic aberration coefficients has a
minimum value equal (2.278434) (Fig. 9).

Under infinite magnification, it seen that as the
voltage ratios (V2/V1) increasing, the relative spherical
aberration coefficients Cs/f, are decreases. At the voltage
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ratio (V2/V1 = 1.8) the spherical aberration coefficients has
a mimmum value (Cs/f, = 32.1375), also the relative
chromatic aberration coefficient Cc/fi are decreases and at
the voltage ratio (V2/V1 = 8) the chromatic aberration
coefficients has a minimum value (Cec/f, = 1.21875)
(Fig. 10).

CONCLUSION

The implementation of the charge density method on
the design of electrostatic lenses appears to be an
excellent tool in the field of electron-optical design. The
cylindrical immersion lens that has been designed by the
above method 15 found to have different optical properties
depending upon various geometrical parameters in
addition to the mode of operation. For instance under zero
magnification mode of operation this lens did not exhibit
acceptable properties from the electron-optical point of
view. However, in the infimte magnification mode of
operation the lens performance was found to be excellent.
The optical properties are highly dependent on the
geometrical factors of the lens such as the radu and the
lengths of the cylinders and the width of the air gap
separating the two cylinders. Thus, one could now apply
the charge density method on designing various types of
electrostatic lenses.
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