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Abstract: From a GIS software point of view, spatial error and quality control of spatial data has been almost

forgotten with the exception of geostatistics. This review study pretends to re-evaluate major sources of errors
in spatial data. This includes qualitative and quantitative accuracy, data quality principles and interpolation
uncertainty perceptions. As an illustration purpose, an empirical analysis of 98 samples of Pb lead contaminant

is also presented along this study.
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INTRODUCTION

Data quality might be defined as the general intent of
fitness of a particular dataset for a particular use that one
may have in mind for the data (Chrisman, 1992). Surveying
skills, support of samples, measurement device accuracy,
the choice of map projections and spheroids, rounding
errors and visual presentation are some sources of
uncertainty. In terms of time process, the loss of spatial
data quality may occur in different phases, that is, during
digitalization, documentation,  analysis,
presentation and through the use to which they are put
(Fig. 1). Hence, error must not be treated as a potentially
embarrassing inconvenience, because error provides a

storage,

critical component mn judging fitness (a measure of how
well the geometric representation matches the original
spatial representation) for use (Chrisman, 1992).

Still, the major flaw is the absence of GIS tools for
error evaluation. GIS users always have in mind that
measurement errors and short-range variation contribute
to local uncertainty, which can be very large indeed
(Burrough, 1993). Tn particular, GIS error propagation is
quite important during an overlay operation of 2 different
thematic layers or 2 layers of the same theme but
originally at different scales. Certainly, the Monte Carlo
simulation can play an important role to model these
effects. Tomlinson (1992), substantiate a distinctive belief
stating 1f we are to convert this huge amount of human
experience and effort to digital form, we need better

digitizing methods, that is, data selection, error correction,
coordinates conversion, editing and reformatting, in
sequence. Independent from the total
volume of spatial data that 13 considered, it 1s crucial to
know the ratio between images and attribute data. As the
image versus attribute ratio increases, the spatial data
handling problems increase as well mn a hasty way
(Calkins, 1992).

Error can be questionable in an estimation process,
too. According to Tsaaks and Srivastava (1989), it is
always be modest and confess ignorance m large
unsampled area instead involving extrapolating data
values over large distances that, in general, can lead to
quite misleading results. Further, the presence of a large
quantity of data samples for huge areas might create a
problem for the geostatician since, he/she must be aware,
which sampling distribution should be choose for
statistical processing in order to represent the whole
exhaustive data sample distribution.

Quite often, the quality of GIS software 1s judged by
the visual appearance to the human eye. This is surprising
given the costs of data acquisition and the investments
that are linked to the use of GIS (Bumrough and
MacDonnell, 1998). In general, these cost round 60% of
the total project budget. Only in the field of geostatistics,
uncertainty and error measurement has been developed to
deal with both 1ssues, particular with Indicator Kriging
(IK), Probability Kriging (PK), mdicator simulation, cross-
validation and Kriging variance.

some order
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Fig. 1:

Cout of amor ooerestion baoreases

Inform ation managem ent Chain showingthet the cost of error correctionincreases as one progresses along the

chaiti Good doown entati oty educati on atd trairdng are indegral to all steps (Chapimar, 2008

To review errors cuality control and wncertarty
assesament in a 313 framew otk becom es the core of this

state- of-the-art study.
SOURCES OF GIS ERRORS

The capakility of an institwtion to produce high
uality data is influenced by the lewel of staff experience
atid laboratory facilities, Vet, to determine spatial data
guality is not an easy task. & major suggestion by
Chapenan (2008) regarding, principles of data quality is
showny in Table 1 where all data must be attached by a
docwmnentation  quality  fleld. This will frowide an
indication of the certanty of the identificat on.

Chrisman (19920 argued that ertor isanintegral part of
spatial  information processing  and it showld  be
recognized as a firdam ental dimens onal issue of spatial
data Hence, GIZ should put a significant effort into the
devvel opnertt of methods to report and visualize databages
error like owutliers, logical consistency walues, missing
fields, typograptic errors of non-atomic data values (m ore
than one fact entered into a singe field). Isaaks and
Stivastava (1989, suggest to sortthe data and to exatmine
the extremie walues, tolocate them on amap, especially if
they are isolated, or to check coordinates errors in order
toprodice clean data. According to both authors, extreme
values should be deleted from the data set on estimated
studies.

Painbio (19927 and confirms Clriam an (19920 vew
gtating that error should be added to position and
attribnate GI3 data. By directly recogrizing error, itmay be
possible to confine, it to arceptable limits It seems, it iz
more efficiert to achdewe alewel of error compatible with
the purpoge of the analyses that are to be petformed than
swept aw ay vnder the carpet. Stil, error cannot alvways be
avoided cheaply or easily.
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Tabk 1:Possible classification of docimrerdation qualie

Tderd® s d by world e xpert i the tazs with high ettty
Tdemwrorld e xpett & the ta s with reasorable certs by
Idem wrorld e zgpert & the taa with soene doubts

Idem regiorial expert o the tasa with high certatriy:
Tdern Teziaal e 3pert i the tavs withre acorable certaiviye
Tdemre giorial expert the tas with comne dondbts

Idem nom-expert the tazs with high o ertaiby

Idem nomr-expet ithe tass with e acorable certainy
Idem notr-expet nthe tass with corne doihbit

Idemthe ollectorarith high certa iy

Idemthe collectorarih reasotiablke Certaiby

Idemn the collectorarth some doabt

Fig 2: Position shift from datum differences by Peter
Dana (Chrisman, 1992

& common GI3 error sowce iz that the same
geographd cal entity (for ex ample, alake) may be differently
describied by topographers foresters, fisheries experts
tecreation specialists, wildlife officers or agronomists.
This can ocow on different maps, produced by different
methods (remote sensing, topographic maps, aeria
photographs or local surveys) and by differert GI3
otganizations. Figuer 2, for instanee, presents the datim
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differences for the same location. How to react to this
possible lack of logical consistency in different digital
data banks? Averaging routine or probability matching
are common solutions.

As expected, different data dates, distinct scales and
assorted class areas classification in the same layer
should be avoided. Map units that are appropriate at a
scale of 1:250,000, for instance, are too generalized for
1:10,000 scale map and vice-versa. The conversion of
geographic coordinates (latitude and longitude) to planar
ones (polar or Cartesian) by GIS input routines arise
problems, as well: the mercator projection implies great
distortion in high latitudes, while Azimuthal preserve
neither angular nor area relationships. Yet, according to
Bonham-Carter (1996), mercator is an excellent system for
regions at scales of 1:250,000 and larger.

Aftribute accuracy (how the estimated value
approaches the true wvalue) can be bias due to
systematically wrong measurement. The international soil
reference and information center showed that variation in
laboratory results for the same soil samples could easily
exceed £11% for clay content, £20% for cation exchange
capacity, +10% for base saturation and £0.2% units for pH
(Burrough and McDonnell, 1998). On the other hand, the
attributes assigned to a polygon may not homogeneously
to all parts of the polygon since reality is not made with
black and white colors. Indeed, there is a light spectrum in
the middle.

Location accuracy such as latitude, longitude or
elevation above the sea level determination is a real
problem, as well. Quite often, errors on map accuracy
(how far is the geographical location of an object in
relation to its true location on the ground) is expressed as
the square root of the sum of mean deviations at different
scales. Table 2 shows this relationship.

Database lineage accuracy (the ability of deriving
final thematic map layers) is also a controlling concern of
the growth of large spatial databases. Even, the source
document is itself a distorted and abstract view of the real
world is greater than digitizing errors (Painho, 1992). For
the same author, in vegetation land information systems,
mis-labeling of polygons (when a polygon of class « is
assigned to class [3) is likely to be more important than
mis-location of polygon boundaries due to digitizing error.
Another, traditional problem arises from keying error
when the clerk entered the place code for a city as 8885
instead of 8855.

Other researchers, present spatial error in different
views. According to McAlpine and Cook (1971), for
instance, 2 nitial maps with m1 and m2 segments, the
overlay derived map could be estimated by
ml +m 2+ 2x/ml=m2 . Goodchild (1987) showed that the
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Table 2: The square root of the sum of mean deviations is computed with
the positional error of a set of test points, squarmg the mdividual
deviations and taking the square roct of their sum

Map scale Accepted root mean square error (m)

1:50 0.0125

1:100 0.0250

1:200 0.0500

1:500 0.1250

1:1000 0.2500

1:2000 0.5000

1:4000 1.0000

1:5000 1.2500

1:10000 25000

1:20000 5.0000
Rules Small in Longand  Composedof Nodeshave4

arca thin 2arcsonly  incidents ancs

Map with superions] - —
i 72N I P=2N iy 22 o
Superioiss polygens _/L\ _,A\ _/4\ ‘,A\
eliminated

Fig. 3: General procedures to eliminate sliver polygons
(Painho, 1992)

| \—

A

Fig. 4: Quite usual, these lines recording is left to the
subjective judgment of the field worker

average number of spurious polygons may round 17%, if
an overlay operation is accomplished. Chrisman (1992)
discusses topological error such as dangling chain,
unlabelled or conflicting labels and chain with same
left/right. Confirmed by Painho (1992), in a square 100 cm
map sheet size, a 0.05 mm precision represents an
uncertainty of 0.05% relative to the size of the sheet. As
well, major sliver polygons generation in overlay
procedures may become a nightmare (Fig. 3).

A contribution from ESRI®, in particular, is the COGO
module, a coordinate geometry entering procedures for
land record information providing high levels of accuracy
or correctness based on explicit measurement of features
from some known monument but four to 20 times more
expensive. Undeniably, this accuracy/cost approach may
create controversial discussions. If for the overall
community of municipal users the benefits seem relatively
small, engineers argue that precision is necessary for
survey and engineering computations.

The line width may represent a significant challenge
to the vectorization designer as Fig. 4 shows Analogous,
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Fig. 5. The digitized lake with 204 vertices (left) versus
the simplified representation by the Douglas-
Peucker algorithm (right)

higher scanner resolutions are needed where lines in the
map are very close together. Yet, Peuquet and Marble
(1993) states that this procedure might not be necessary
since, smooth lmes can easily be generated by
interpolation from lower precision data.

The Perkal s epsilon band model may also be useful
for representation lines errors. In tlus paradigm,
3 situations can emerge: no error is assumed and the point
is inside of the line, the observed point has a probability
of 68% of lying within one standard deviation of the mean
band; The point is out of the line. Still, it misses a
stochastic process model regarding error accuracy. As
well, the Douglas-Peucker process for line simplification
suffers from the same difficulty (Fig. 5).

With the Circular Standard Error (CSE) model, a point
acouracy error closely related to the true (%, y) coordinates
on a topographic sheet, can be represented by a set of
2 ellipses centered on the point with one standard
deviation left-right (xx direction) and above-below (yy
direction). For Painho (1992), the probability that a point’s
true location lies somewhere within the radius circle is
equal to the CSE (39.35%), that is, a 2.146 of the CSE
radius will contain 90% of the distribution under the
circular map accuracy standard.

The error creation by the computer word overflow
was demonstrated by Gruenberger (1984). The number
1.0000001 was squared 27 times in an 80486 PC with 4 and
8 byte precision After 27 squaring, the single precision
reached a value of 8850397. With the double precision
version, the final value was 674530,

According to Burrough and McDonnell (1998), the
error variance in an area estimation for any polygon is
given by a summation of all the errors from all the
bounding cells. If m cells are ntersected by the line
boundary, the error variance will be

V =ma%
where,
a = 0.0452,
V = The error variance.
S = The linear dimension of the square cell.
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Other vector to raster conversion error models can be
found on other literature such as Switzer (it estimates the
optimal grid size and total error mismatch when converting
vector polygon maps to grid ones) and Bregt (it converts
data twice and compare differences).

SPATIAL INTERPOLATION UNCERTAINTY

Although, spatial data lives with uncertainty, science
needs safe foundations. Uncertainty, is a dimensionless
parameter for which high values are bad and lower ones
are optimal. Thus, spatial uncertainty must be space
geometry dependent because areas away from sample
locations hold higher uncertamnty. It must also take into
account the variability of sample values. For obvious
reasons, a particular GTS field for uncertainty computation
is interpolation. Further, since, different interpolation
procedures may give dissimilar results and ground truth
can never be known, it may be useful to know what the
predicted chance of exceeding a given upper limit is, for
demand, so decisions about expensive cleanup operations
can be well founded, for instance. With agricultural
applications, administrators might be interested to know
how much of the whole population would give a higher
retumn than the value of a certain crop, while within
environmental issues, supervisors might be looking at
toxicity levels. The question is to determine how much of
the population is likely to lie above or below a cut-off
value.

Two issues emerge from this perspective. First, the
choice of the probability threshold can be subjective. A
given contamination level may be unacceptable for
residential areas but tolerable for industrial yards. Second,
the estimation error may be ignored. A contaminated
location can be declared safe on the basis of an estimate
of pollutant concentration which is mcorrect but slightly
less than the regulatory threshold (Goovaerts, 1997). If the
true and the estimated values belong to quadrant TT on an
Estimated versus True grade plot, a good opportunity to
invest can be missed (risk B or health cost). If it falls
within quadrant TV, Fig. 6 expensive consequences can be
expected (Risk « or remediation cost).

Uncertainty, about cell size and error has a close
relationship with cleanup costs, too. Small blocks are
desirable because cleanup can cost less money than
larger ones. Nevertheless, if errors are too large then there
is a realistic possibility that blocks below threshold level
are treated and blocks that are really above that level are
missed. According to Isaaks and Srivastava (1989), with
their Walker Lake study, 7% of the area for a threshold
value of a thousand was considered, while only 2% would
have been suitable if the support had increased to
20%20 m”.

To quantify these uncertainties becomes, then, the
issue. The misclassification risk associated witha
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Real

Fig. 6: False positive loss occurs when unpolluted land 1s
classified as polluted (IV quadrant), while false
negative loss when polluted land is classified as
unpolluted (II quadrant)

particular physical cut-off definitely increases at threshold
location boundaries since, additional sampling at those
locations might be worth to avoid risk ¢ and P costs. If
the goal of a manager’s decision 1s to minimize
unnecessary cleansing and i1l health costs (in conjunction
with a pre-setup deterministic cost) then, it is possible to
layout the total spatial health and remediation costs based
on the resulting expected false negative error and false
positive error models (Goovaerts, 1997).

With regard to economic land evaluation, linear
programming including sensibility analysis 18 a
possibility. Burrough (1991), presents a gradual
deterministic response of pH crop illustrating soil acidity
impact on crop growth: No crops, if pH>7, Normal growth,
if pH<5 and (7-pH)/2 of crops, if 5<pH<7. Seven years
later, Burrough and McDomnell (1998), presented the
Kenya annual soil erosion simulation using the:

Universal Soil Loss=(R_e (297+72)=8_e (0.14£0.05)x
S 1(2.1340.045)=<3 (1.169+£0.122)
xC (0.63+0.15)=P (0.5£0.1)

where,

Re : Rainfall erosion.

Se Soil erodibility.

S1 Symbolizes slope length.

S : Equals slope.

C Cultivation.

P Signifies practice for rainfall-rainoff impact,

yielding an annual soil loss rate of 946 cm in
40 years.

On the basis of the assumption of null dependency
among points, classical statistics presents another option:

+  BEstimation of the best unbiased estimator for the true
population standard deviation, that is:

% =  The ith sample value.
X = Hquals the sample mean.
n = The sample size.

s+ Computation of the best standard deviation
confidence interval based on the true unbiased
population assumption:

(n-1c"™ o (n-Nc"
’Xazlower ’Xazupper

Where |

o’ = The estimated sample variance.

YViwr = Dquals the lowest x° for a certain
confidence level (df = n-1).

YViewr = Dquals the upper x° for a certain

confidence level (df =n-1).

»  Assessment of the mean confidence mterval using
the t-Student distribution. That 1s,

* *

_ O _ o)
X+ tdf.lower $< (L X+ tdfupper ﬁ
Where,
tuwe = PEBquals the lowest t value for a particular
confidence level (df =n-1).
turype: = PEquals the upper t value for a particular
confidence level (df =n-1).
o = The standard deviation dataset.

s HEstimation of the probability that 1s likely to lie above
or below a threshold value (based on the Normal
distribution). This means:

threshold- x
o threshold-x

e

&)
Where,
X . The estimated sample mean.

The uncertainty layout of the conventional Ordinary
Kriging (OK) is closely related to its variance in the
following way:

n n n
s:=C,, +Z Z wiijij-2Z w.C,
i1

i=1 j=1

Yo 'Z Z Wiwj?y+zz WiV
im1

i=1 j=1

where,
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T = The variance of the estim ated point waloe.

c, = The covariance between the ith and jth
satriple.

w, and w, = The O weights

C. = The covariatice betwreen the ith sample and

the urknown value beitg estimated.

Seccordingto Soares (2000, if the sm of the weights
i 1 and the average estimation error equals 0 then the
Eriging etror variance becomes

Thg =Z Wy xR Y

i=1
whete,
T = Equals the LaGrange multiplier of the OK
giystetm.
w, = The OK weights while v(x, %, is the vatiatice

hetween the ith and the estitv ated point.

Hence, if errors respect the “bell” cwrwe then red
value s will fall within the Kriging predictont2 o’y interval
for a 953% confidenice level (this implies spmametry of the
local distritaation of errors).

Howesver, wcertaindsy is not itnclhaded with wari ogram
estim ati on and prediction vati ance 1sunderestimated. But
ever more criically, OK watiance isnot sensitive to local
error for 2 major reasons: [tis based on the same globa
vatiogram. Distatces among locations are the only
relevant factor O wvatiatce iz mainly a geometse
dependent meamre heading the assumption that an O
true error map is a better substitite. OK wariance is too
much of a spatial operation

Fig. 7: The Kriging variance map
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Using a theoreti cal dataset with 76 samples of Ph lead
cottamination dataset (i ean 49 watiance = 457,
variation coefficient = 043, skewness = 1.53) as an
illustrati on puarpose, Fig 7 confirm s this perspective that
Kriging variance becomes higher with the absence of
spatial satnples and vice-vwersa. Notice that an andsotropic
spherical model wasused.

Before the final suface is produced, consistency and
biased estim aticns absetice can be tested by temporardy
deopping aty sample from the dataset, while its walue is
te-estimated using the remaining samples. Repeating this
crossvalidation procechwe for all observations (rea
values versas estimated ones), itis possible to obtan the
experimerntal mear error

E(Xi‘ '?H;:'

=

11

the root mean square prediction error

( ’E(Xi %) }
-1

atid the average Eriging standard error

( ’E GDK(Xi}}
f1-1

If the average standasrd etror is close to the root-
meat-square prediction error then the vser is assessing
the prediciion wvarability correclly Howewer, if the
average standard error is greater or less than the root

1m0
00
00
1]
Qa0
0s00
0400
030
00

0100
0mn
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mean square prediction error then the wuser is
overestimating or underestimating estimation variability
(ESRIT, 2001).

Still, it is hard to judge the influence of variogram
parameters on cross-validation errors (Soares, 2000).
Tsaaks and Srivastava (1989) proved that if a relative
nugget-effect of 4% lead to a lower cross-validation
residuals for the dataset of 470 samples, the original model
performed better than the one whose nugget-effect was
automatically adjusted on the basis of cross-validate
residuals (Fig. 8). Also, if the original dataset is spatially
clustered then the cross validation pursues the same
trend leading to a situation where residuals become more
representative of certamn regions. Hence, a good statistical
model does not signify that a good spatial genuine model
is good.

Non-linear Probability Kriging (PK) and Indicator
Kriging (IK) present an alternative uncertainty approach
whose final estimates show the probability mapping for

Var2
145.22 +

§6.09

exceeding a given cut-off. Because of the smoothing
effect of Kriging (lower estimate variance when compared
with the real sample variance), the local distribution of
Kriging estimates is conditionally biased leading to a
false and biased probability distribution, especially when
the cut-off value becomes very high or very low (Fig. 9).
Juang and Lee (2000) pomnt out that PK accuracy 1s much
higher than that of IK m their probability estimation of
heavy-metal concentration in Taiwan. According to both
authors, 1t yields more space variability and it behaves
better with a screen-effect situation by reducing the risk
of getting inconsistent probabilities.

Geostatistical sinulation tries to reflect the mean,
histogram, covariance structure and spatial data variance
characteristics of the original dataset whil, at the same
time, it makes the simulation value close to the real one.
By generating multiple and unique interpretations that
respect the spatial dataset, simulation generates multiple

01, 02- Bivariate statistics: Var 2 versus Var 1 file: Pb2.0UT
Biplo}l

b

26,95 T 1
255 130.75 236.0 Var 1
Bivariate statistics
Variable 1 :Varl Varisble 2 : Var2 Samples: 99 Linearfit: Y=a+bX
Average 1 :53.59 Average 2 :53.02 Coavriance:  587.64 a:21.53
Variance 1 :999.96 Variance 2 :622.52 Corr. (pearson): 0.74 b:0.59
Minimum 1 : 25.5 Minimum 2 : 26.95
Minimum 1 : 236.0 Minimum 2 : 145.22
Nb 39  Histogram FiY) Distribution. fimetion Box-Plot
907 [ 1.09
24
19
19.0 0.3+
9
A ==
1
00 000000080000 0.0 . . 1
-38.72 68.66 176.04 -38.72 68.66 176.04
Varl Uniriate statistics Varl Anomalaus
Sample: 99 Minimum : -38.72 75 pere 1 737 Large maximum : 46,38
Megn ; 0.57 Spere 2442 85 perc : 11.64 Minimym ; 48,71
Variance : 44721 15perc :-1146 95 perc 1 17.73 Small maxinmm : 22.61
St. Dev.: 21.15 25-perc  :-8.48 Maximum : 176.04 Minirmum : -24.94
Coef Var. : 36.91 Mediam :-1.17 Coef. Skewness : 5.64

Fig. 8: Cross-validation (upper) and major umvariate descriptive statistics of the difference between real and estimation
values (lower left and lower right) of the previous dataset. Notice the over-estimation of low values and the under-
estimation of high ones, a common Kriging interpolation effect
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Fig. 9: Spatial estimation by Indicator Kriging (TR for the Phlead dataset whose out-off level ecuals the 3rd quattile
(392 pra)). As expected the probability to exceed this particular threshold is represented by the red orange-
yellow reglon
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Fig 10:The average sequenti al Gaussian sitvodlati on of the first 20 sitod ations (upper) and its variance (low e generated
by Geal3® softwrare. Az expected the simidated variance is greater where there is a major variability am ongthe
otignal samples o whete no samples are fouand
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configurations of possible realities, a realism issue (Kriged
surface determines the most likely value at a particular
location, an accuracy 1ssue), based on the search window

Gaussian distribution but not on the optinum
estimation (Wang and Zhang, 1999). For Soares (2000),
the greatest potential of geostatistical simulation lies in
the production of uncertainty estimations for a given cut-
off value and therefore, the assessment of impact costs
(Fig. 10).

CONCLUSION

If we forget the future and consider the issues that
surround spatial analysis today, the gulf of ignorance
between the known and the unknown 1s a difficulty not
vet resolved. From the GIS perspective, it would be
useful to have a calibrated model which could be used to
describe error, to track it through GIS processes and to
report uncertainty after final results are presented. From
a spatial statistical view, geostatistics holds capable
algorithms to handle interpolation uncertamty. Still, the
faculty to deal with error outside of thus field is quite
lower. Geosoftware reflects this last tendency in its worst
way. Researchers and commercial companies must
understand that dozens of research articles are printed
every year with new emor evaluaton methods.
Regrettably, the majority of those ideas end up on the
bookshelf without any practical consequence for the
spatial analysis user. A theory only succeeds if it leads to
a practical purpose. Categorically, the spatial error
implementation is still a vacuum within most GIS products.
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