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Abstract: We constructed a polynomial error approximant of the error function e,(x) of the Lanczos Tau method
for ordinary differential equations, based on the error of the Lanczos economization process. In the present
research, we modify this approximant for boundary value problems in ordinary differential equations by
perturbing some of the homogenous condition of e (x) and show that the new approximant, thus obtamned,
yields a more accurate estimate of the maximum error. Numerical results further confirm that the order of the Tau

approximant is also accurately estumated.
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INTRODUCTION
The Tau method of Lanczos (1938), Coleman (1976)

and Okunuga (1984) solves the class of the m-th order
linear differential ecuation:

e

with the associated multi-point boundary conditions

F

YO (x)=3

r=0

m

Ly(x) =3

r=0

fx, a<x<b (1.1a)
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arky[r) (x4 )=01,, k=(1)m

B

L*y(x,) L1b)

f
=

I

and where, N, F are given non-negative mtegers; a,,, X,
e, £, P, forr=0(1)m, k=1 (1)m.
The method seeks an approximant (T au approximant):

yn(x):zn:arxr, n<+o0 (1.2)
r=0

of y(x) which satisfies exactly the cormresponding
perturbed problem:

rts-1

Ly, (X)::ifrxr 2 Ty Ty (%) (1.3a)
3=D =0
L*y, (x4 ) =0y, k=1{1)m (1.3b)

where, Tau parameters (hence, the name “Tau method’), T,,
r=1(1) m+s, are to be determined from Eq.(1.3) along with
a, r = 0(1) m. We shall denote a typical Chebyshev
polynomial T, (x) by:
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(1.4

The parameter s called the number of over
determination of Eq. (1.1a), 1s defined by (Fox, 1968):
(1.5)

s:max{‘Nr7r|:0£r£m}

This original formulation of the Tau method shall
herein be referred to as the Differential Form of the
methaod.

Two other varants of the method are the Integrated
form (Adeniyi, 2000, Fox, 1962; Fox and Parker, 1968;
Ortiz, 1974) and the recursive form Lanczos (1956),
Ortiz (1969, 1974) and Freilich and Oritz (1982).

It

[[m[e(x)dx

denotes the m-times indefinite integration of g(x) and

L= fmL()dx (1.6)
then the Integrated Form of (1.1a) 1s
I (y(x))= [ mff(x)dx e, (x) a7

where, ¢, (x) 13 an arbitrary polynomial of degree (m-1)
arising from the constants of integration. Thus, the
integrated Tau problem corresponding to Eq.(1.3) is the
perturbed problem.
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m+5—1

J._[m_[f dx+c + Toes Tnml(x)
r=0
(1.8a)
Ly, (xe)=0y, k=1{1)m (1.8b)

The problem (1.8) often gives a more accurate
approximant of y(x) than Eq.(1.3) does, as it involves a
higher order perturbation term (Fox, 1962; Fox et al., 1968).

For the recursive form we define the canonical
polynomials Q(x) r € Np-S, by:

LQr(x):xr (1.9)

where, 5 is small finite or empty set of indices with
cardinality s (Ortiz, 1969, 1974; Crisci and Ortiz, 1981).
We adopt Eq.(1.9) in Eq.(1.3a), that 1s, n

m+s-1 n-m+r+l

Lyn fo + z Tmﬂ . c 11— m+r+1
k=0
to have
m+s=1 n-m+r+l
Ly, (x EfLQ )+ e Y GILQL(x)
r=0 k=0
n-m+r+l

m+s-1
= L{Eerr(X)+ Tm+s—r
r=0

r=0 k=0

Ck[n7m+r+1)Qk (X)}

since L is linear. If L™ exists then

n-m+r+l

[n-m+r+l
Tm+s—r Z ck

r=0 r=0 k=0

)qQ, (x) (1.10)

This is the Tau approximant of y(x) by the recursive
form.

AN ERROR ESTIMATION OF THE TAU METHOD

In  Adeniyi (1991),
polynomial function:

we constructed the error

¢n Um (X) Tn—m+1 (X)
C[n-mH) °

n-m+1

2.1)

azx<h

(eﬂ (X))n+1 =
as an approximant of the error function of

e (x)= ¥(x} -y (x)

An approximant of the error function: The Lanczos Tau
approximant y,(x) of y(x) is an economized polynomial
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function implicitly defined by a differential equation. So,
logically, based on the error of the Lanczos economization
process (Gerald, 1970), it could be possible to construct
an approximant of the error e (x) in y,(x) as follows:

By the Lauczos economization process, we have that:

n-1
v (x)=3"bx" +bx"

r

(2.2)

(2.3)

with an error

(2.4)

To make Eq.(2.4) suitably appropriate for all members of
Eq.(1.1), we modify 1t to have the (n + 1)-th degree
approximant

(pn Um (X) Tn—m+1 (X)
C[n—m+1)

n—m+1

(2.5)

(e (x)),,, =

of the error

e, (x)=y(x)-ya(x)

i y,(x), where, the form of U (x) depends on the
boundary conditions Eq.(1.1b) and it is chosen to ensure
that (e (x)),., satisfies all the homogenous conditions of
e,(x); (¢, is a parameter to be determined. Once (e,(x)),., is
constructed, error estimation of the Tau method, as
explained in the next section, is made possible.

Once U_(x) 1s determined, an error estimation of the
Tau method, as explained in the next study, is also then
made possible.

We remar here that error estimations for related
integration schemes have been reported in the literature
(Oliver, 1969, Zadunaisky, 1976).

ANTMPROVED ERROR ESTIMATE
OF THE TAU METHOD

The choice of U (x) which ensures that (e (%))
satisfies,

n+l
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Lx(e,(x,))=0, k=1(1)m (3.1)
1s desirable. However, it may not always guarantee a most
accurate estimate of the maximum error

(3.2

s:max\en(x)\, a<x<b

in the range of consideration (a, b). Fox (1968) had earlier,
confirmed this and suggested that the perturbation of
some of the homogenous conditions of e, (x) for (e,(x))p
may give the desired accuracy.

This suggestion led us to consider the choice

u, (x):xm (3.3)

which, for boundary value problems, will not make

Eq.(2.5),
that is:
Py Un (X) T (%)
(eﬂ (X))n+1 - C(n—m+1) 1 (34)
n-m+1

satisfy all the homogeneous conditions Eq.(3.1).
These homogenous conditions of e, (x),,,, which are
not exactly satisfied by the new form

(3.5)

(pn Xm Tn—m (X)
(en (X))n+1 = C(n—m+1)+1

n-m+1

may thus be considered perturbed for (e,(x)),.,.

The flexibility in the mode of choice of U (x) as
described in the study makes the choice Eq.(3.3) more
appropriate and as will be seen later in the study, the
choice Eq.(3.3) for U,(x) and hence Eq.(3.5) for (&,(x)),,
leads to dramatic improvement in the accuracy of

(3.6)

g, = max = maxle, (x)‘ =g

ag<xz<sh

(e (%)),

Now having fixed the choice of TUyx) as
Eq.(3.3) and consequently (e (x)),., as Eq.(3.5), we then
follow Adeniyiet al. (1990), Adeniyi and Onumanyi (1991)
and Adeniyi and Erebhole (2007) to estimate & by
considering the perturbed error problem

i s-1
L(en (X))n+1 = ZU Tm+s—r Tn—m+r+1 (X)+

mes—-1 _

Z Txms—r Tn—m+r+2(x)

=0

(3.7a)

(3.7b)

The extra T’s in Eq.(2.2) are fixed and are to be
determined along with ¢, by solving the system of
equations resulting from equating coefficients of x™*",
™., 7™ in Bq.(2.2a). However, as only @, is needed in
Eq.(2.1), we employ a forward elimination process for its
determination. It 1s to be noted that the t's are already
known from the Tau approximation process of the study.

This then leads to the estimate:

S LY
- c(n—m+1) T ax<h
n-m+1

= max|(e, (X))n+1

azxzh

g e, (x)|=¢

For the integrated formulation, the corresponding
error problem 1s

I {eu(x)),,, =~f fm/ [mgl"m”” T“’m”“(x)}dx (3.9)

m4s—1_

+Cm(X)+ Z Tin+er Tn-m+r+3 (X)

L*(e, (%)) =0, k=1{1jm (3.9b)

atstotl ot at]
, X

By equating coefficients of x s XN
Eq.(3.9) we get the (m + s + 1) equations for the
determination of, T, T,, ....., T,., and ¢ , where, ¢
replaces ¢ Eq.(3.4). Again, a forward elimination
process is recommended. Subsequently, we get a second
estimate,

& =fo)/|ciTy (310

For an error estimation of the recursive form, a slight
perturbation of the condition Eq.(1.1b) by €, will be
considered so as to obtain an estimate of g,,, in terms of
canonical polynomials. Once this 1s achieved, a new error
estimate £, can then be obtained (Crisci and Ortiz, 1981,
Onumanyi, 1981; Onumanyi and Ortiz, 1982; Adeniyi and
Onumanyi, 1991).

For the purpose of our discussion mn the study we let

RE,“):ZV:CE") Q¥(x), k=0(l)m-1  GI1D
r=0

denote the derivative of order k of R (x) with respect to x,
with R® = R(x) and where, Q/(x), 120, is the set of

canonical polynomials associated with Eq.(1.1a).
NUMERICAL EXAMPLES

We consider here 2 examples for discussion on the
2 possible choices of U (x) and hence (e (x)),.., of the
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preceding study and then show that the choice
Eq.(3.3)and consequently Eq.(3.5) 1s more accurate.

Example 4.1 (a midly stiff problem): A boundary value
problem 1 a fourth order differential equation

d* &
Ly(x)_[dx3601dx +3600J (1.12)
y(x)=-1+800x*, 0=x <1
y(0)=1 y'(0)=1. y(1)= (4.1b)

15+s1r|.h( ), v (1):1+cosh( )

The analytical solution is
y(x) =1+0.5%* +sinh(x)

This problem has been used quite of ten to test
methods (Conte, 1966; Delves, 1976; Davey, 1980).
We shall first use the form

u, (x):x2 (}(71)2 (4.2)

which ensures the exact satisfaction of the homogenous
conditions

& (0)=¢, (0)=¢ (1)=e, (1)=0
By:
@, x" (x- 1)2 T_;(x)
)

n-3

(ea(x),,, =

68{3600C" %™ +3600 (c&‘j) —ac )x" + [(3600 ~3601n-3601n" JCl*7) -

[720211(11 —1) €57 + (3600 +3601n—3601n* J 77 —

n-

n-

+
~7200C2 +3600C" "

n-

(n472n373602n2+10,805n77202)C(n33)+7202(n 73n+2)C[ 0 (3601n -10 803n+3602)C(n )

_ BZC n-3) ( 2Xr+3 +Xr+2) (4_3)
Where,
8 = (pn (Cfln—;))
and then the form
U4(x):x4 (4.4)

for which only the condition e,(0) = &',(0) = 0 are exactly
satisfied by
T,

g, x"
(e (x)),., = T

n

n-3
BZCnE r+4 (45)

b

while, the other 2 conditions e,(1) = e'(1) = Oare perturbed
for Eq.(4.5)

Now let us insert Eq.(4.3) in the corresponding error
problem

L(en (X))n+1 = (es) (x))n+1 - 3601(3&2) (x))IH +3600(En (x))

=T, ()=t (3) = 5T (6) - w T (%)
(

+T1Tn+1 X)+T T ( )+€Tn—1(x)+T4Tn—2(X)
(4.6)
to have
enf. o 3600x™* - 7200x" +[ 3600— 3601(r + 4) (r + 3) | x*
= +1202(r+3)(r+2)r + 1)~ + (r+2) (r+1r(r-1)x*

- Tliicfnﬂ)xr +(‘_Ez - ‘cl)icgn)xr n (;3 _ Tz)ECEn_I)Xf
=0
(147‘53):‘::(3“ Dy ,Tazcn Iy

That 1s,

11-

7200C(" +3600CHY |

7200047 +3600C) [

n-

A
b

=

wa

n-1

=ity [‘;Cl[qn“) +(‘_:2 7':1)C( ):| [ ™y (;2 -1 )Cl[qn_)1 + (;3 -1, )C(H)}(IH

[nC ( ) c +(‘Ea T,

ety efa e,

We equate coefficients of x™, x", x>/,

5o

n.

uc! = 36008t

TlCE}n”)Jr(E]*Tl)C[n) 36008[(}[ N _ ol 3)]

n-

nCml (E; —1 )C(")1 +(’:3

n—

-32) n-2
n-2 j|X

)
-1, ) el iy
( 2) ( ) 3 4nss :|

x*? and x"” to obtain the system

(4.7)

e[ 36003601 -36001n* )L~ 720017 +3600CL; ﬂ
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e e (e (5wl
= 6[ 72020 (ny) 7 +(3600 + 36010 - 3601n )77 - 7200 7 + 3600CL" |
E1C£:+3)+(‘Ez _Tl)cl(:)z +(13_12)an7;1) +(E4 —‘Ej)C(n:Z) —‘E4C(n:33)

(n*—2n" - 3602n +10,805n - 7202) C{7 + 7202 (n*3n + 2)C1)

=0
(3601n -10 803n+3602)c( ' —7200C"7 4 3600C "

We sclve this for ¢, by forward elimination using well-known relations C,% = 2% and C,% = 1/2kC,® subsequently
we obtain, from (i1), our first error estimate for the differential form,

g = e 2% (4.8)
[iEe) D
Where,
D=2%"22500 0 ¢ (16(1 —225¢C0 1))cg{;1)722*5(“2){16[;17450(:5" s (nfl)(16oc —225¢™ 1))}72“”7&1
and

o, = 3600CH 7 - (36010’ +n+7200)Cl;
B, = {3601’ - 7201n +10,800) C-" ~14,400C" 4 7200C
A :(n —3603n° +18,004n* 728,806n+14,404)c"3

n—

—~{3602n" —10,803n + 3602} 137 — 7200C"" + 3600C

A similar procedures yields, for the form (iv), the estimate

4n—6
5 - 2 @10)
]
where,
k = 225[22“'3 ) +22“c(““ﬂ [16@,2 225CE=H) +450n22“} Y _(n—2)2 @11
{32{52 4507y -3600Ct, +(n-1)[ 160, —225C1") +450r122“]}722“” -
and
o, = 3600CE." - 3601n (n+1)CE?
B, = 3600C™ ) ~3601n(n —1)Ct?
v, =(n-2)(n-1) (n+1)c”-3601(n-2)(n-1)ct7" +3600CH "
For the integrated formulation, we have from Eq.(3.9a), that in this case,
L e, ( n+17 J. j J. J. [': )+, T, (1) +1,T, (t)+‘|:4Tn_3(t)]dt du db dw (412)
+TlTn+S( )+12Tn+4( )+13Tn+3( )+‘E~Tn+2( )

where,
0l =0, 3001 (400w essof] [ 1 [ (40 v o a5 aw

with Eq.(43) m Eq.(4.12) we get

gyt ren 300X 7202x" 3601 3600x™°
Q, & (r+5)(r+6) (r+4)(r+5) (r+3)(r+4) (r+5)(r+6)(r+7)(r+8)
c(n“_;j); ~ 7200x7 3600x"°

(r+4)(r+5)(r+6)(r+7)+(r+3)(r+4)(r+5)(r+6)

460
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_ n+5c[n+5) N _n+d C[ﬂ+4) . C[n)xr+4
TGN G tz(m +2)(r+3)(r+4)
_ n+3 n-1 Cgﬂ—l)XH“

+ 1 (ned)yr o
2.C ) e 2) (3 4]

r=0 r=0

=

r+1)(r+2)(r+3)(r+4)

_ n-3
- et

S+ 2)(r+3)(x+4)

(
C[n*Z) r+4
(

T H

— n-2
£, Yoy o Z(

- T

We proceed from here with same approach which led to the system Eq. (4.7) to get

T (n+5) — 3600(5;
. (n+2)(n+3)(n+4)(n+5)
n (n-3) [(n-3) |
T, Cm oy ol = _ [3600(:11* 72006, }(‘Dﬂ
1045 2 ned - 1-3)
(n+1)(n+2)(n+3)(n+4) (n+1)(n+2)(n+3)(n+4)Ct;
_ _ _ T CI(]"_) +1 Cl[f__l) o
T T e e 3
n{n+1)(n+2)(n+3) n(n+1)(n+2)(n+3)C;" (4.13)
_ _ _ T CEI"_) +1 Cl[q"__l) +1 CIE"__Z) o
et fos 5o CE O O b 3
(n-Dn(n+1)(n+2) (n-Dn(n+1)(n+2)cl?
[':CEI)3+': ey, C£3)+‘|:4C£]n33)}_ B, P,

T c(n+5) Ezc[n+4)+ Ezc[nﬁi)_"_ E,C(n”) —
n+l n+l n+l (n72)(n71)n(n+1) (n—Z)(n—l) (n+1)c1[1n33)

1n+l

We solve this for ¢, by forward elimination and then obtain the estimate

(:.5; 242 [ 15 . 414
8 = S = 13(2 )[‘{§1‘51+2(n+4)§212+22 2(n+2)(n+3)(n+4)‘:4}u (4.14)
where,
D, =36002*"(n—2)(n—jn(n+1)C" Y+ (n-2)(n-1)g,cl™ s,
—2" 7 (n-2)(n+2)8, - 2" (n+2){n+3){n+4)(n+35)p;
and
& :512(n+2)(n+3)(n+4)C(n_) +(n-2)(n+2)8,~2(n-2)(n—1)ncl¥
&, =256(n+2)(n+3)Ct "~ (n-2)(n- 1)
8, =2 (n+4)(n+3 )ﬁ1—3600n(n+1)cg“*5)
8, =27 (n+3)(n+5)p, - 7200(n— n(n+HCE +(n—1)(n+3)8,
8,=256(n+3)(n+4)C, ~(n-1) cli?
For the choice Eq. (4.4), we sunilarly obtain
In+l2
72&‘[11111‘*‘2(11*‘4)11;1;+22n+2(n+2)(n+3)(n+4)t4]‘ (4.16)

€
: ks

where,

461
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k,=(n-2)p, 2% " (n+2)(n+3)(n+4)(n+5)u,
= 512(n+2)(n+3)(n+4)CM +256(n-2)(n+2)(n+3)(n+4)C,
+(n-2){n-1) (n+2)Cc -2(n-2)(n-1) C&"

n+l

4
n+2

py =256(n+2)(n+3)Cc) - (n-2)(n-1)cl?

n+l

B =14400(n-1) {n+1)2"c™? +115200(n 1) (n+5)2%+*c"

! el
—(n+2)v, +(n-1)ct v, (4.17)

v, =27 (n+3)(n+4)(n+5)p-7200(n 1) (n+1)C7 —57600(n -1} (n+5)
+(n-1)(n+3)v,

v, = 2'3600(n+4)(n+5) i) -2 (3601n-1), (n+4)(n+4)-3600n(n+1)CE;

p =360C" Y +3601(n-3)(n—1) 2

[n+5)

B, = 3600C17 3601 (n-2)(n-1)CEP + 2" (n-2)(n-1)_(n+1)
Finally, for the recursive form, we have from Eq. (1.10) and Eq.(3.11), that
¥o (%)= —Qp (x)+1800Q, (x)+ 1R, (x)+1,R, (x )+ TR, (x)+T.R, s (x)
where, the canonical polynomials Q,(x), r = 0, are defined recursively by
Q,(x)=[x"+3601(r—1)r Q, , {x)—(r-3)(r-2)(r-1)r Q, ,(x)]/3600
By applying the boundary condition Eq. (4.1b) in Eq.(4.18), we have

— Q,(0)+1800Q, (0)+ TR, (0)+T,R, , (0)+T,R, ,(0)+T,R, , (0)=1

— Q,(0)+1800Q, (0)+ TR, (0)+ T,R., (0)+ TR, {0)+ TR, (0)=1

—Q,(1)+1800Q, (1)+ 1R, (1)+T,R,_ (1)+T,R,_,(1)+ .k, (1)=1.5+sinh(1)
=1+cosh(1)

We eliminate T,, T, and 1, from this system to get

1, [53 §v.R,5 (0)-vR, (0)-v,R,, (0} +o,v;R, (0)] (418)
=0; I:ﬂlva -7R, (0)’ ViR (0)]* o ViR, (0)

The parameter v,, v;, Vi, 0,, 0; and 05 in Eq. (4.18) are defined below
hence,

ool [ {v:Ra 5 (0) - ¥R, (0)- ViR, (0)} + iR, , (0)

= H:G:1 {T]1V3 -nR, (0)_ iR, (0)} -ov;R, (0):”+ g
where, £, = 2"° |1,| |D,|™". This leads to

‘[513 {T]IVB ~7R,(0)-v,R,, (0)} —oviR, (0)]|D1 ” _

= (4.20)
|D1”[Gz {VaRnfz (0)_ ViR, (0)_ ViR (0)} +o,v:R, (0)]‘ —ghe

4= 4

as an estimate of |t,|. Thus, again from Eq.(4.8) we get a new error estimate

462
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‘[ {71'“3 %R, (0)’ ViR, (0)} -o,v;R, (0)]‘

g, = (4.21)
2" 4B‘D ” ViR, (0)_Van(0)_VZRnfl(0)}+GZV3Rn—2(0):”_1
where, Table 1: Error and error estimate for example 4.1
' l E; E; i E;
o, =v;— 7R} (0)7 TR (0) Vi(;(r) ror estimate Vi?(;
o, = v,R] (0)+ v,R! (0)7 v,R! . (0) n x3(x-1)? x exact error
' 7 4.44x107% 1.53%107° 3.04%107°
05 = ViR, (0) 8 1.42x107% 6.15x1071° 4.71x10710
v, = PyPs + P1Ps 9 4.07x10710 2.08x107! 1.62x107!
¥, = pupotp.p 10 9.23x10712 5.33x1071 4.16x1071
27 P35 44
V3= PR3~ PPy Table 2: Error estimate for example 4.2
' E E tirmat E
= (sz+ﬂsp4) (0) n4( (0)+p2Rn72(0)) V:r(:)(; oo V:E:;r)
1 1 R’ {0 n X (x-1) X exact error
2= (P 1P R (1), (o (1) 2.3 (0)) & 2.71%10°4 6.11x107° 6.35%107
ny =1+ Q; (0)-1800Q, (0) 7 3.01x10~4 6.68%107 44241079
l l 8 6.92x1077 1.52x107 0.94x107°
n; =1+ cosh(1)+Q; (1)+1800Q; (1) 9 1.92%107% 4.17x107" 5.18x107"
M; =1+Q;(0)+1800Q4 (0) 10 3.71x10°° 7.99x1077 4.53x107"
N, =1.5sinh (1)+Q, (1 )+1800Q2 (1)
‘ x'Q, T, (x)
=R, (0)-RL, (O)R,., (1) (o ()} = )
P =R, E(I)R' (1)_R;—2(1)Rn—1(1) !
=R HR! {(0)-R! (0)R_{(1
P =Rea ), - (0) o (R, (1) Which satisfies e (0) = O but perturbed for e (1) = 0.
Py =R, (1R, (1)-RL ()R, (1) The error estimate obtained using Eq.(4.22) for the
ps =R, (DR, (1)-R; , (1R, 4(1) differential form, mtegrated form and the recursive form
g
ps =R, ()R, (0)-R._,(0)R, (1) are, respectively.

For the choice Eq. (4.4), the same result holds except
that D, is replaced by k, given by Eq. (4.10); the estimate,
in this case, is denoted by €.

Numerical results for the example are presented in
Table 1.

Example 4.2 (The Runge’s function):

Ly(x)= [(1 +x7)

d2
@-s-ﬁlx—-s- 2] y(x)

The theoretical selution 15 the Runge’s function:

1
1+x*

y(x)=
For this example, we have the choices of (e, (x)),, as:

(x)

T

n-1

x(xfl)(pn
el

n-1

(4.22)

(e (x)),., =

which satisfies the condition (e (x)),,, and
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. 22n+1 TZ‘ 22n+5 ‘Tg‘ ~ ‘7\4||2Rn (1)7Rn(0)|

Sl T BT (27 o1
Where,

o, =(n+2)(n+3)C"" ~16n(n+1)

[Ct) -l -2 n(n+1)(n+2)

B, = Cln? -2 (n+2)-256| ¢ —Cl) ) |

E—*: R‘n ( )Rn—l (0)7Rn (O)Rn—l (1)

For the 2nd choice Eq(4.16), we have the
corresponding error estimate as:

)[R, (1) R, (0)
b % 2 el

oy = (n+2)(n+3)C™Y —16n (n+1)cl) - 2 n(n+1)(n +3)
B, =n(n+1)[ i }]

and £ retains its definition above. Numerical results for
this example are presented in Table 2.

n—

-2 (n+2)-256{Cl " +CI)
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CONCLUSION

A modification of the polynomial error approximant
(e x)),,, of the error function e, (x) of the Tau approximant
v,(x) of y(x) has been presented and shown to yield a
more accurate estimate of the maximum error in y,(x) in the
range of defimtion when compared to that earlier
proposed in Adeniyi and Onumanyi (1991). The estimate
obtained also confirm the order of the Tau approximation
as 1t accurately estimates the order of accuracy of the Tau
approximarit.
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