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Abstract: This study is concerned with the Tau methods for imitial value problems in the class of non-
overdetermined second order ordinary differential equations. Three variants namely the differential, the
integrated and the recursive formulation are considered. The corresponding error estimates for the 3 various

are obtaned and some selected examples are provided for illustration. The numerical evidences confirm the
order of the Tau approximants so obtained for all the cases.
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INTRODUCTION

Accurate approximate solution of initial value
problems and boundary value problems in linear ordinary
differential equations with polynomial coefficients can be
obtained by the Tau method originally introduced by
Lanczos (1938). Techniques based on this method have
been reported in literature with application to more
general equations including non-linear ones as well as to
both partial differential equations and integral equations.
We review briefly here some of the varnants of the
method.

Differential or original form of the Tau method: Consider
the m-th order ordinary differential Eq.

Ly(x): :iPr(x) Y (x)=f(x), a<x<b

(1.1a)
with associated conditions

m-1

L*y(%):= 20, 77 (%)
=a, , k=1()m

(1.1b)

and where, |ct] < oo, [b] < oo, €y, Xy, &, T = 0 (1)m-1,
k=1(1 Jm are given real numbers, f (x) and P(x), r=0(1)m,
are polynomial functions or sufficiently close polynomial
approximants of given real function.

For the solution of Eq. (1.1} by the Tau method
(Lanczos, 1938, 1956; Adeniyi, 2000, Adeniyi and

Edungbola, 2007, Crisci and Russo, 1983; Fox, 1968;
Fox and Parker, 1968; Freilich and Ortiz, 1982 ), we shall
seek an approximant of the form:

yn(x):zn:ar X, N<+w® (1.2)

r=0

of v (x) which satisfies exactly the perturbed problem

m+s-1

Ly, (X) = £+ 3 e, Topn(® (133)
L*y, (x4) = o, k=1(hm (1.3b)

fora < x < b and where, 17, 1= 1(1) m + s are parameters to
be determined along with a,, r= 0 (1)m, in Eq. (1.2)

T (x)= cos{rcos'1 [(2x—2a)/(b—a)—l]} = iCi') x (1.4

k=0

is the r-th degree Chebyshev polynomial valid in the
interval (a , b) and

s=max {N,-1/0 < r<m}

15 the number of overdetermination of Eq. (1l.la)
(Fox and Parker, 1968). We determme ¢, r=0(1)nand T,
r=1(1)m+s by equating corresponding coefficients
of powers of x in Eq. (1.3a) together with conditions
Eq. (1.3b). Consequently we obtain this desired
approximant y,(x) in Eq. (1.2).
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The integrated formulation of the Tau method: The
integrated form of Eq. (1.1a) is given by:

[[T- [ ax+c,

where, C_(x) denotes an arbitrary polynomial of degree
(m-1), arising from the constants of integration and

I = Ijjm IL() dx

which is the m times indefinite integration of 1.(.). The
corresponding Tau problem is therefore,

(y() = (x) (1.6)

(1.7)

Ly, () = f(x) dx + C (x)+
R .
Z Tm+S— n+r+1 X)
L*y, (x,) = o, k=1(D'm (1.8b)

where, vy, (x) is here again given by Eq. (1.2). Problem
Eq. (1.8) often give a more accurate Tau approximant than
Eq. (1.3) does, due to its higher order pertuwrbation term.

The recursive formualtion of the Tau method: The so-
called canonical polynomials {Qux)}, r € N, - S associated
with operator L of Eq. (1.1) 13 defined by

LQ, (x)=x" (1.9)

where, S 13 a small finite or empty set of indices with
cardinality s (s < m+h), h being the maximum difference
between the exponent r of x and the leading exponent of
the generating polynomial L.x', forr € N (Ortiz, 1969, 1974,
Adeniy1 and Edungbola, 2007). Once, these polynomials
are generated, we seek, in this study, an approximant of

v (x) of the form:

n<+m (1.10)

:i¢Q®,

which is the exact solution of the perturbed problem

zfQ@mﬁfam

-+l

z Cin7m+r+1) Qk (X)

k=0

(1.11)

where, f.r =0 (1) F, are the coefficients in f(x).
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Their use is advantageous as they neither depend on
the boundary conditions nor on the mterval of solution.
Furthermore, they are re-useable for approximants of
higher degrees.

ERROR ESTIMATION OF THE TAU METHOD

We review briefly here error estimation of the Tau
method for the 3 variants of the preceding section and
which we had earlier reported n Andemyi et al. (1990)
Andeniyi and Onumanyi (1991).

Error estimation for the differential form: While, the
error function

e, (x) = y(x) - v, (x) 2.1
Satisfies the error problem
=- mi_l'cms,r T (%) (2.2a)
=
L*e (x,)=0,k=1{1)m (2.2b)
(o0 (x)),y = 1 () @ T (x)/CE2Y0 (23
Satisfies the perturbed error problem
Le 0l = 3 e o
(2.4a)
e s
=0
L*{(e,(x))., = (2.4b)

where, the extra parameters T, r=1(1)m + s and ¢, are to
be determined and p(x) is a specified polynomial of
degree m which ensures that (e(x))., satisfies the
homogeneous condition in Eq. (2.2b).

We insert Eq. (2.3) in Eq. (2.4a) and then equate
corresponding coefficients of x™*'', x**, ... x*™'' and the
resulting linear system 1is solved for only ¢, by forward
elimination, since we do not need the Ts in Eq. (2.3).
Consequently we obtain

§1 = Tixx b en(x)n+1 = (Pn/ (2_5)
Cinr::l) = a<x<b S, ( )‘ =g

Error estimation for the integrated form: The error
polynomial Eq. (2.3) satisfies the perturbed problem
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L(eu(x)),, = ffm.. | [2 o T (9

+ Z m+s-1 n m+r+3 (X)

r=

(2.6)
dx +C_

L

We msert Eq. (2.3) in Eq. (2.6) and then equate
coefficients of x™™™!' x™"™ _ xn-m for the determination
of the parameter @, of (e (x)),.,. Subsequent procedures
follows suit as described above in the study Eq. (2.1) in

order to obtain the error estimate = .

Error estimation for the recursive form: Once the
canonical pelynomials of the study 1 are generated, they
can be used for an error estimation of the Tau method
(Crisci and Ortiz, 1981; Lanczos, 1956; Namasivayam and
Ortiz, 1981; Onumanyi and Ortiz, 1982). Here we
consider a slight perturbation of the given boundary
condition Eq. (1.1b) by & to obtain an estimate of the Tau
parameter T,,,,, in terms of canonical polynomials, which is
then substituted back into expression for % in (25) for a
new estimate %

A CLASS OF NON-OVERDETERMINED SECOND
ORDER DIFFERENTIAL EQUATIONS

We consider here the 3 variants of Tau method of
the preceding the study for the problem Egq.(1.1) when
m =2 ands = 0, that 1s, the class

Ly(x) = (P2U +P,x+P, x’ ) y”(x) +

(By + Byx)y'(x)+ By y(x) (3.1a)
F
=>f x,a <x<b
r=0
y(a) = o, y'(a) = o, (3.10)

Without loss of generality we shall assume that
a=0andb =1 since the transformation

Tau approximant by the diffrential form: By inserting Eq. (1.2) mto the perturbed form of Eq. (3.1a) we have

n

(P + Pyx + P,y x7) Yr({r—1)a, x 7'+ (B, + P,x) irar X!

r=0

F F
ro_ r
FP > a X =3 X+ T,
r=0 r=0

This leads to

n-12
Z r+1 r+2 P2n a,, x' +
r=0

+2[(r—1) 1P, + 1P, + Pylax’

r=0

F n n-1
= 36X+ 20K+, 2O x
r=0 =0 r=0

Hence,

{{(n=1)n Py, + 0Py Ja, + [(n-2) (n-1) P, +(n-D1)B, +Py Ja, ,

-1, ) -1, C(n b_f

n-1

+ {[(n—l)n P, + 1P, + Py Ja, - 1,CY - fn} x
n-1

+3 {(r+1) (r+2)a, a,,+[r(r+1) P,

r=0
+ (r l)r P, +rP11+PDD] a,

n-1

(1)
- fr -1 Cr -

v:(xfa)/(bfa),aéxgb (3.2)

takes the problem Eq. (3.1) into the interval [0, 1].
r=0
(X) + TZ Tnfl (X)
n-1
Z P, + Pm) (r+1) a, x
r=0
} Xn—l
(3.3)

r+1

] ar+1

T, CEIH)} x' =0

We now equate coefficients to have the linear system of (n+ 1) equation

(r+1) (r+2) Pya,,, + (P + By) (r+1) a,,,

+[ rfl I'P22+I'P11 + Pm] a,

—f -, ¢, P =0 1 =0(n-2

[(n-1)nP, +nP, |a, + [(n-2)(n-1)Py,+(n-1P,+Py |a,,

-, CW -, CV - =0
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[(n—1)n Py, + B, + Py |a, -7, C¥ =0

n - fn

We solve this system together with 2 other equations
arising from the conditions Eq. (3.1b) for the determmation
of the (n+ 3) parameters a., r =0 (1) nandt,.r=1, 2.
Consequently, we obtain from Eq. (1.2) our desired
approximant y, ; (x).

Error estimation for the differential form: For problem
Eq. (3.1)we have from Eq. (2.4a) that

T

n+l

L(en (X)) =T

T, (X) -1

(x) + (% - )

T (X)

at

(3.5)

where,

2

d
L= (PEU + Pyx o+ Pﬂx ) e (PIU + an) &"' Fy 3.6

T,

n-1

(ea (x)),,, = X', Ty (x)/ €Y
— (pn[ CEn—l) XHZ]/C(BI:I)

We equate coefficients of x™', x*' from Eq. (3.5) to
have the system

(3.7)

n-1

)

r=0

0 [Py +(+1) P +n(n+DP,| CY =7 CE
9 [CS::I) Py +nC§:1) Py+(n-Dn Cl(’]ri_zl) Pp+n+l) Cl(’]n—_zl) B,
+nn +1) LV Py, ]: EIECE ) Ry
(3.8)

8[ Y By + (n-1) €I P, +(n-2) (n-1)CE7 By
+nCEY B+ (n-Dn CIP Py +nln+1) CY Py |

— 7 (n+D = (n) (n-1)
=5 G+ (12_11) Ch - 1, Co

where,
o= (cr7)

From this system and by using the well-known
relations:

i _ il o _ ln o (3.9)
2
we obtain for ¢, the expression
dn-2 2
27 (3.10)

P = R,

where,
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R, = (PUEI +P, +nP, + n’P, ) by
27 (20P,, + 1P, + 4nB, + 3n°P, +6n’P,,
- 2nP, ) -

(16P), —16P, + 16nB, + 16n'P,, —48nP,, +32P,, ) C\

+4’R, + 4n°P, + 40°P, + 40P,

(3.11)
From Eq. (2.5), we obtain the error estimate
in
52 [v4] (3.12)
R,

Tau approximant by the integrated form: From Eq. (1.8)
we get

[T Py + Pyt 4+ Pt (1) didu

+Ij (B, + Bt)

:j:_[nu[z,;fr 1;f}dtdu+1:1 T,,(x)+1, T,,(x)

¥'(t) dtdu + j: L P, y(t) dtdu

This leads to

Pyy(x)+ By [xy(x) - ZIDXy(u) du]
[ 4juy(u)du+ZII
+ Pll[juxuy(u) du - .[:J.Uuy(t)dtdu}

+ P, j jﬂ y(dtdu + ij: y(u) du

Toy Py + (0"1 Py + oy By + 0y By + 0, Plu)X

+ P,

dtduJ

(3.13)
With Eq. (1.2) this gives
n+l P P
ZPZD a x' +Z[m] a,_, x
+n2+2 PnnJr(r*Q) P +(r;2) (1-3)Py a_ X' (314)
r=2 (I'— DI'
n+2f IZszX Jr_Ezcml r
r= 2(1' 1)1' r=0
This gives

0+l 1+l
(_Pzn %y +Pzn 4y =T C[n )_Tz C[n ))

+ [(* Pyooy + Py o — By 0 + Py &
_ 1:2 C5n+1)j| x

+(_P21 + Pw)au - T Cgmz)
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(r-2) B, +Pw} [PUUJr(rQ)PHJr(rQ) (r3)P22]
_— aH+ )

+ Pya, +
zz:{ @ [ r (r—1r
S (LA

n+1

__fs

(rfl)r

i Py +(n-DP +(n-1)(n-2) P, a,_, - fig T, CmD g e |y
n{n+1) n(n+1)

(3.15)

4 By +nP; +nn-1) Py a — £, _o oo Lymr g
(m+Dn+12) * m+Dn+2

This yields the system

Ppa; -1 C(DMD - T C(DMD =0y Py
(n+2) (n+2y _
(_ P21 + PID)aD + qua1 -7 Cl -1 C1 =y PEEI —y P21+ Oy Pw
(r-2)P,+7, Py +(r—2) B, +(1-2)(r-3)P,
af—l + ar—2 -

(r—Dr

L cl = —frflz r=2(n
(r=Dr (3.16)

[(nl) P21+Pw] .t [PUUJr(nl) P11+(n1)(n2)P22] .

n+l n{n+1)

P, a, +(
r

C£n+2) -

1

f,

n-1

n{n+1)

BP,+nP,+(n—1)n P. f
[ i 11 ( ) zzJan 1, e _ n

— 1, C[n+2) -1 C[n+1) _

n+l n+l

(n+1) (n+2) " (n+1)(n+2)

We solve this system fora,, r= 0(1)n and T, , T; to subsequently obtain from Eq. (1.2) the approximant y, ,(x) of y(x).

Error estimation for the integrated form: From Eq. (2.6), we have for problem Eq. (3.1)

.'.UXIUU(PED +ht+ Pzztz) (ez (t))n+1 dt du

+J':jn"(PIU + B,t) (e, (1)) dt du+_[;jnu Py (e, (1)) dt du

. n n-1 (317
- _[D J’D [‘cl DGR R Yo t‘} dt du
r=0 r=0
1n+3 1n+2
+ T M X T YoM X
=0 r=0
where, (e,(x)).., 18 given by Eq. (3.7). This leads to the Eq.
I n-12 (aet) . n-1 (1) 5 n-1 C n-1j Xr+3
—i_ P ™ 4P ot 2N I
CE:Q { bl ; r X 7 [; r X Z (r+3)
-1 n-1 C(n—l)xr+4 n-1 C[n—l)xr+4
+P I8 n-1) _r+4 r _2 r
z {,n R R ) ,znz(r+3)(r+4)]
n-1 ~[n-1)_r+3 n-1 (~(n-1)_r+4 n-1 (n-1)_ r+4
‘P, Crx i P, S Cx (3.18)
b (r+3) Jaar (r+4) pr (r+3) (r+4)
at e b g R e
+Fy . =T " - T
r_n(rJr3) (r+4) o (r+1) (r+2) b (r+1) (r+2)
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We equate coefficients of x™7 , x"? and x*"' to have the system

Py By +(nt)B tn(n+1) P, o) _ oz ale)
| (n+2) (n+3) . e
P i By + 0Py cl Py + 0B, + (n-1) nP,, -1 |
c |l (n+2) ) (n+1) (n+2) "
(n)
= C(n+3) = c[n+2) _ T cn (319)
1 n+2 + 12 n+2 (ﬂ+1) (H+2)
P, o P,+(n-1)P e e
Cla1) Py CI[HI) +[%1))21] Cx('rll) + (Puu + (nfl)Pn +(n72)(n71)Pﬂ ) CI['rSl) =
n-1
e e I e U e
n(n+1) n{n+1)
We solve this by forward elimination for @, to get
n-3
g = = T (3.20)
n{n+1)R,
where,
cl I By + (n+1)P, +n(n+1) P, )
R3 = 22n+5 (
n+2) (n+3)
7{[(n+2) (n+3) |20 +1) (B, +nP, )- (n-1) (P = 0P, +n — Py )|
(n+1)(n+2) (n+3)[ By +(n+1)B, +n(n+1) Pn]}
’ a(n+1)(n+2) (n+3)
(n-3)(By+ 0Py —By) (B~ RivnRy n'By 3By 2B, ) O (3.21)
2(n+1) 2 n(n+1) “
Hence, we obtain the error estimate where, the sequence {Q(x)}, r € N, — 3 is generated thus:
From Eq. (1.9) and Eq. (3.6) and by the linearity of T,
T
g = o, |/t = ——2— (3.22)
2 = | \/ ! ‘ n(n+1} [R,] L' = (P + Py x + Pyx? ) rr=1) < F 4 (B + Py x)rx™!

A Tau approximant by the recursive form:

F

()= Y. Q)+ n Y00 Qx) +n 0 Q)

=0 r=0
(3.23)
If F < n, then this becomes
S ey (a-1)
X)= f+1, CY+1, CV
yn( ) r:O|: r 1 T A :| (324)

Qr(x)v{fn + T Ci”)]Qn(x)
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+ By x” = L {r(r - 1) Py QL (x)+ (1B + 1(r-1)By,)
Q. x)+ (Puu +1B +1z-DPF; ) Q. (X)}

By assuming the existence of I.™', we obtain

Xr_r(r_l)qu Qr—z(x) - (er+(r—1)P21) QH(X)
P, +1P, +1(r-1) B,

Q.(x)
(3.25)
provided that Py, + 1P, +1(r-1) P, ,# Oand forr=0,1, 2, ...

Now from Eq. (1.10) and (1.11) we get for problem
Eq. (3.1):
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n-

2, Q(x)+a, Q(x)=

1

(n) (a-1)
[fr +1, GV + 1, O J

»«
=

T
=0

Q, (x) -s-[fn + 1, Cf,")J Q.(x)
gving us
a, =f +1, CP+1, CY r=0)n-1
a, =f +1, C7

(3.26)

The values of 1, and 1, are obtammed by applying
the conditions Eq. (1.3b-2.23) and this gives the
system

c™ o (o ct o (o

{yn (0)} _ = T Qr( ) = T Qr( )

BT S o) S g
L= =0 (3.27)

We msert this in Eq. (3.29) to obtain

We solve the Tau system Eq. (3.27) for T, and T, ,
insert them m Eq. (3.26) to determine a,, r = 0 (1) nand then
obtain the desired approximant v, ,(x) from Eq. (1.10).

Error estimation for the recursive form: From the
conditions Eq. (1.3b) we get

F

S Q,(0) + 1, jcg@ Q, (0)
= (3.28)

— zcm bQ,(0) = o

0) +7 Y00 Q (0)
=0 = (3.29)
n-1
+ 1, > CEPQI(0) = a,
r=0
From Eq. (3.28) we have

w=(o-Tr a0 Sare)
Serao]

MZC(“'”Q O)M,n cn Q,(O)] { co Q,(O)] @DC&“’ Ql(O)H

1=

- oo o-(m-Ere0| (a0

3

c‘“"’ Q(0)-

bl

since, & > 0, given by Eq. (3.12). This leads to

|72|

1=l

e
E

r-

a-31.0,0)] [Terao)

R| ‘mg ', (0)- [aﬂ —;;f, Q, (0)] [ZD ey (0)] ‘

r=|

e, (O)J [; i Q, (O)J [Z& U (O)J‘

+ta

|.E2 ‘ = -l u n-l u (3.30)
|[aEeao)Zeao (S an|Eean] -2
Hence,
o wEee©) [w Eroo)(Teao)
S PR Al = i L 2 33
‘ 1‘ 2—2:\ [Z C(rn—l) Q; (0) [Z an) Qr (O)Ji[z an—l) Qr (O)J [Z Cin) Q; (0)}‘71
=l r=0 r=0 r=0
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where, R, is given in section by Eq. (3.11). Thus, our new error estimate is

wEarao-{w-gran|Eeeo)

. s (3.32)
o1 n -1 n
>[Eeren]Eeeo) {Earen]Sean]| 1
=0 =0 =0 =0
A striking interest in respect of Eg. (3.32) is Table 1: Error and error estimates for problems 4.1
that an estimate s possible prior to the computation Degree (n)
of y(x) once the canomcal polynomials are known. Method Hror 2 3 4 5
Differential g 5931072 7.59x1073  2.07x107%  1.68x107°
NUMERICAL EXAMPLES Form g 888x102  265¢1077  0.03x107  415x107°
Interpolated €, 646X 1074 4.23x107°  7.00x1077  3.85x107%
We consider here 35 selected examples for ~ Form & 8-84“0_2 1-06“0_2 2-86"10_: 2-14X10_Z
: : : : Recursive T, 8.62x10™ 1.82%10™ 5.53x107 1995107
experimentation with our results of the preceding the 5
p P S Form |3 9.21x107! 2.86%1072 1.54x107°  9.96x107°

study. The exact errors are defined as:

Table 2: Error and error estimates for problems 4.2

B = lznzt {‘y(xk)—yn,[(Xk)},E:1,2,3 Degree (n)
Method Error 2 3 4 5
where, {x,} = {0.01k}, for k =0(1)< 100. Differential ¢ L74x1070 51841072 215%107  6.22x107
The numerical results are presented in the Table 1-3 Form g, 3.24x1070 2.28x1070 3.45x107°  5.21x107%
the examples: Interpolated T, 136x10°%  7.77x107%  L67x107%  7.38x10°°
Form g LOLX1070  3.76x1077  1.34x107% 546107
Recursive T, L05x1070  1.03x107"  1.36x1072  7.18x107
Example 4.1: Form T, 5.78x1070  154x1072  1.52x107  2.35x107
y”(x) + y(x) =x?, y(O) =0, (4.1) Table 3: Error and Error estimates for problems 4
; -~ ' Degree (n)
¥ ( =3, 0<x <1
Method Emror 2 3 4 bl
Amnalytical solution y (x) = 2cosx + 3sinx + x° — 2 Differential g 4.00x107  1.10x107°  8.18x107%  £31x107°
Form g 897x1071  3.36x1070  7.02x1072  8.60x107
Example 4.2: Tnterpalated %, 04251072 4.27}107F  2.12x107%  5.07x107
Form g 2.85x107"  2.95¢107  5.40x107°  4.56x107
Recursive T, 936x1071  4.04x1070  812x107F  214x107
y'(x) + 25¥(x) = 5x* +x. ¥(0) (42)  Fom T, 401107 333107 536x107  6.60x10°

:0.2,y'(0):0,0£x£1
Table 4: Error and error estimates for problems 4.4

) ) ) Degree (m)
Analytical solution y (x) = (27 cos 5x-sin 5x + 25x°
+5%-2)/125 Method Emror 2 3 4 5
Differential g 3.43x1072 1.38x1072  2.18x107%  4.24x107*
-2 -2 3 e
Example 4.3: Form T 4.17><10_ 4.63><10_ 8.03X10_ 8.97><10_
Interpolated g, 1.38x10™%  538x107%  8.84x107¢ 1.10x107¢
. , Form g, 4.77:107F  2.89x107F  6.63x107*  9.98x107°
¥'(x) - ¥'(x)-2y(x)=8 y(0) (43) Reursive E  340<107  347%10%  670<107¢ 9.58x10°
= 0,y'(0)=10,0<x <1 Form z, 449x1070  7.98x107  4.03x10°  3.02x10°
) Table 5: Error and error estimates for problems 4.5
Exact solution, Dearee (n)
1 2z 2% 3
X)= e - e 4 2e®
y( ) 2 2 Method Emror 2 3 4 b
Differential g 1.89x107! 1.40x107"  5.60x1072  3.92x1(7°
0 —0 —2 —3
Example 4.4: Form g 2.26><10_l 6.47’><10_3 7'.46><10_4 5.04><10_5
Interpolated €, 1.63%10 4.85%10 2.35x10 1.17=10
. , Form T, 6.93x107! 2.21x107%  3.43x107%  2.28x107*
y(x)+ 59 (x)+ 6y(x) =0, y(0) (4.4) Reawsive g 280510 1.93x1070  1.97x10%  2.62x10°
=1, yr(o) =—1,0<x =1 Form T 1.95x1072  6.73=x107"  5.22x107%  3.33x107°
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3z

True solution, y(x) = 2e™ — e

Examples 4.5:

)

V(%) -3y (x) + 2y(x) =%

(4.5)
v =¥, v(0)=,0<x<1

Closed form solution,
y(x)=2e" —3¢" + i(ZXZ +6X + 7)

CONCLUSION

The Tau methoed for solution of mitial value problems
in a class of second order ordinary differential equations
with non-overdetermination has been presented. Three
variants of the method were considered for the
corresponding Tau approximants of their desired analytic
solutions and the associated error estimates were also
obtained.

For all the numerical examples considered the error
estimates closely approximate the exact error. The
difficulty in the generation of the so-called canonical
polynomuals for lgh degree Tau approximants limited the
scope of the research to approximations of maximum 5°.
While, the differential form may easily be generalized
for all classes of differential equations which lies within
the scope of the Tau methods as we had reported in
Adeniyi et al. (1990), integrated the interpolated form has
the advantage of higher order accuracy than the other
2 variants due to the higher order of perturbation term it
involves and the recursive form, though very cumbersome
for lugh degree approximants, has the advantages of
minimum order Tau system, non-dependence of its
canonical polynomials on the boundary conditions, as
well as the re-usability of these polynomials for
approximants of higher degree. The error estimate, in the
latter case, may also be determined even prior to the
solution of its corresponding Tau problem.
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