M Research Journal of Applied Sciences 3 (4): 288-293, 2008
We]l

ISSN: 1815-932X
© Medwell Journals, 2008

Online

Design and Implementation of a Model of a Specification
Language for Formal Verification

Kamrul Hasan Talukder, Ahmed Shah Mashiyat and Rezoanoor Rahman
Computer Science and Engineering Discipline, University of Khulna, Khulna, 9208, Bangladesh

Abstract: The world is moving towards automation and automation requires correctness. So the importance

of formal verification tools is increasing rapidly as it is an automatic techmque for verifying finite state
concurrent systems. However, the industrial usability of formal verification tools remains limited for the
complexities and expertise needed for modeling the behavior of a system. In this study, we present a
methodology that can model the behavior of a system in Textual Specification Language (TSL) based on
Message Sequence Charts (MSC’s) with less expertise and effort. For proper illustration of TSL, we convert
the TSL specification into Symbolic Model Verifier (SMV) code using a Turbo C/C++ program and then verify
some properties of the system expressed i Computational Tree Logic (CTL) with the help of the SMV model

checker, producing verdicts or counter example.

Key words: Formal verification, model checking, textual specification language, symbolic model verifier,
message sequence charts, computational tree logic

INTRODUCTION

In recent years, hardware and software systems are
widely used in every day life. The involvement of these
systems with human life 1s increasing rapidly. So, the
correctness of these systems is very important. Logical
errors found late in the design phase of these systems are
an extremely crucial problem for both designers and
programmers. These kinds of errors are very hard to
detect through informal reasoning like simulation and
testing, especially when the number of possible states of
the system 1s very large. Formal verification, an appealing
altemative to simulation and testing, explores all the
possible behaviors of the system to be verified while the
simulation and testing explores some but not all the
possible scenarios of the system. Thus there is no doubt
about the result produced by formal verification method.
For this reason, the application of formal verification is
mcreasing day-by-day and getting popular n mndustry
(Holt, 1999, Talikder, 2003a, b; Halder et ai., 2005). Some
robust tools, such as SPIN, SMV, COSPAN, VIS and
SMART are widely used for formal verification.

In spite, of the huge amount of work done by the
researchers in this field, there still exits some gap between
the mdustty and the research community for proper
automation of formal verification tools. Our view is that
one key abstraction for this situation is the expertise and
complexities needed to specify a system with the exiting
modeling language.

So, our main objective 13 to reduce the effort and
complexity to specify a system behavior by the
conventional specification language like SMV, SPIN,
COSPAN and VIS. For this reason we develop a
specification language in which the system behavior is
easy to code and the effort required to specify the system
1s much less. For comparison we chose the well-known
formal verification language SMV. A system specified by
the Textual Specification Language (TSL) 1s converted to
SMV code and then verifies by the SMV model Checker.

OVERVIEW OF PROPOSED SYSTEM

The main objective of this research is to develop a
specification language for Formal Verification of
communicating components. We consider a simple bus
protocol as the communicating compenents as an
example. At the very first step, our system models the
total system using the MSC’s, a popular tool for formally
explaining the behavior of the functional component
within the environment. From the MSC’s the model 1s re-
specified with Textual Specification Language (TSL)
following a newly developed grammar. This part of the
system should be done informally. Then the TSL file is
converted to SMV code. The converter includes a parser
developed by well-known parser generator java cup
0.10 along with lexical analyzer tool jflex1.4.1. We have
developed the translator with C\CH++. The properties
of the bus protocol to be verified are expressed m CTL

Corresponding Author: Ahmed Shah Mashiyat, The Jaxara IT Ltd., Dhaka-1213, Bangladesh

Res. J. Applied Sci., 3 (4): 288-293, 2008

TSL Semantic
—» ;ﬂ’nta;i‘s | PAPSER > Clz“s":{rvm'
Specification| Y Specification
SMV|code
¥ L4

Error CTL | SMV model

meannge Formula checker

Verdicts or

counter

example

Fig. 1: System architecture

formulas and embedded with the generated SMV code.
The SMV Model Checker producing verdicts or counter
example then verifies this code. The system architecture
1s given in Fig. 1.

TSL: A NEW SPECIFICATION LANGUAGE

In course of the development of the system, we have
formalized a new specification language called Textual
Specification Language (TSL) for modeling the whole
behavior of the communication components. The TSL
specifies a model consists of a set of process where each
process will represent a system component or an
mterface. A transaction scheme 1s the umt of mteraction
between the processes. The transaction scheme 1s
consists of a collection of transactions where a
transaction 1s modeled as an MSC. An execution of a
transaction scheme will choose one of its transactions
depending on the current values of the guard of the
participating processes. A system specification n TSL
consists of a sequence of declarations like process,
scheme, transaction, agents, guard, send and recv ete.
The TSL specification example of the simple bus protocol
in the stucy 4 will give the reader a clear illustration of the
structure of TSL language model. The grammar for the
new language 1s stated below:

S - VERIFY pro-name { proc-dec-part
trans-sch-dec-part }
proc-dec-part - proc-dec-part proc-dec | proc-dec
proc-dec - PROCESS process-name {
var-dec-part
equation-part }
type-id - basic-type | enum-type | array type
basic-type - range-type | BOOLEAN
enum-type - {id-list }
id-list -+ identifier (, identifiery+
array-type - ARRAY range-type OF basic-type
range-type - interger-const .. interger-const
var-dec-part - var-dec-part var-dec; | =
var-dec - type-id : id-list
equation-part - EBEQUATION id-list;

289

trans-sch-dec-part — trans-sch-dec trans-sch-dec-part. |

trans-sch-dec-part }

trans-sch-dec - SCHEME trans-schim-name { trans-
list }

trans-list = trans-dec trans-list | trans-dec

trans-dec - TRANSACTION trans-name {
AGENTS { agent-list } guard-
section }
| TRANSACTION trans-narme {
AGENTS { agent-list } }

guard-section - GUARD guard;

agent-list - agent-list agent | agent

agent - process-name : event-list

event-list - event, event-list | event ;

event - send(mesg-id, var) | send{mesg-id,
const, type) |
recv(process-name. mesg-id) |

{action}

action-atom - simple-stmt ; | if-stmt

action - action action-atormn | action-atom

simple-stmt - var = expr| var :=DIN

expr - expr[*|/|and] F|F

F - F+G|F-G|F|G

G - GmodH|H

H - HRelOpI|I

I = ~I| | (expr)]| var | const

const. - integer-const | boolean-const

integer-const - integer-const digit | digit

digit - [0.9]

boolean-const - 0]1

guard - guard and guard-atom | guard-atom |
(guard-atoim)

guard-atom - ~prop | prop

prop - prop or prop-atom | prop-atom

prop-atoim - scoped-var relop const | scoped-var
relop scoped-var |
scoped-var

relop - =<z <] 2=

if-stmt. - TF expr { action } | TF expr action-
atom | TF expr {action}
ELSE {action}

var - identifier | identifier{identifier] |
identifier [integer-const]

scoped-var - process-name.var

pro-narne - identifier

process-name - identifier

trans-name - identifier

mesg-id - identifier

trans-schm-name - identifier

A detail description of this grammar syntax is out of
the scope of the current study.

A CASE STUDY

Modeling A system by MSC’s: For modeling a system
behavior with TSL, we first model the system by MSC’s.
MSC s a trace language which 1n its graphical form admits
a particularly mtuitive representation of system runs in
distributed systems while focusmg on the message
interchange between commumcating entities and their
(Rudolpha et af., 2008). Due to thewr
intuitive notation MSC’s have been proven useful as
a communication or collaboration tool among a set of

environment

Res. J. Applied Sci., 3 (4): 288-293, 2008

< cpu.sstatus ~ ~ bus.ready

CPU BUS

Request —]

Ready (false) —:|

A

Status; = false

Negative acknoweldgement

Fig. 2a: Negative acknowledgement by bus (slave)

components, thus helping to reduce misunderstandings
from the very early development stages.

This step is not a must but as the TSL is a new model
language, this step will help to realize the intuitive notion
of TSL. For modeling a system let us consider the PCI
local bus as an example (Mokkedem et al., 2000, Aloul and
Sakallah, 2000). PCT is a high performance synchronous
bus standard developed by Intel. A PCI bus transaction
mvolves a master (initiator) and a slave (target) device.
When a device wants to perform a particular transaction,
it acquires the bus and specifies what type of transaction
will be carried out next.

Here we consider only a single transaction that took
place between a CPU (master) to BUS (salve) to send and
receive data. The transactions can be either of negatively
or positively acknowledged based on the status of the
BUS. When CPU wants to receive data from bus, 1t first
sends request to BUS. In return BUS sends either
negative or positive acknowledgement to the CPU, based
on the status variable, bus.ready.

If the acknowledgement 1s negative, the CPU stops
attempting to receive data. And the transaction stops.
The MSC of the negatively acknowledged transaction is
shown in the Fig. 2 a.

Again, if the BUS is ready to send data, it sends
positive acknowledgement, when bus.ready is true. The
CPU then sends address to the BUS. Sequentially, the
BUS sends the desired data to be transmitted, which 1s
stored at CPU. The corresponding MSC can be shown as
the Fig. 2 b.

Modeling a system with TSL: The MSC’s discussed in
the previous study corresponds to two functioning

CPU BUS
Request
[L]
[—=—11
|:.:| Status:= truc
[] Send address > []
Send data
[T+]
Data
Positive acknoweldgement

Fig. 2b: Positive acknowledgement by bus (slave)

component. Two transactions, named as positively and
negatively acknowledged, are took part in the transaction
scheme. The timing sequences of the MSC’s Show that
there are three actions under CPU process and two
actions under BUS process in the negatively
acknowledged transaction. Again there are five actions
under CPU process and four actions under BUS process
in positively acknowledged transaction. The CPU-BUS
interaction 1s modeled m SL form m the following example
according to the TSL grammar.

Parsing and code generation: As we have said earlier that
we will translate the TSL specification code mto SMV
code for proper illustration of the inherent potential of the
TSL. The translation procedure from TSL to SMV code 1s
completely automated. The translator consists of a lexical
analyzer, a parser and a converter. Jflex-1.4.1 is used for
the development of the lexical analyzer.

BusCpu Example {
process cpu {
0..7 : addr_buf;
0..16 : data_buf;
boolean : status;
equation T1;

process bus {
boolean : ready;
0..7 : addr_buf;
0..15 : data_buf;
equation T1;

}
scheme T1 {
transaction nack {
agents {
cpu : send(req, 1,boolean),
recvibus.ack),
{status:=din; };
bus : recv{cpiLreq),
send(ack, 0,boolean);

Res. J. Applied Sci., 3 (4): 288-293, 2008

}
guard ~bus.ready and cpu.status;
}
transaction pack {
agents {
cpu : send(req, 1,boolean),
recv(bus. ack),
{status:=din;},
send(addr,1,boolean),
recvi(bus.data);
bus : recv(cpu.req),
send(ack,1,boolean),
recvicpu.addr),
send(data,data_buf);
}
guard bus.ready and cpu.status;
}
}
}

The parser 1s developed with the Java CUP parser
generator version 0.10. CUP 1s a system for generating

Look-Ahead LR (LALR) parsers from smmple
specifications. The parser produces the semantic
representation of the specification. The semantic

representation of the specification is then converted to
the SMV code.

As the whole mapping technique of the system is
beyond the scope of this presentation, we have discussed
only a general overview of the code generation procedure
based on the example stated in the study. Each process of
a TSL specification corresponds to a module of the SMV
code except the “main” module. For each pair of
communicating process, there are 2 channels. Hence the
number of the channel queue should be n*(n-1) for n
mumber of processes so that the processes are fully
connected. Each module should contain 2*n*(n-1) pointer
variables to indicate heads and tails of the queue
channels.

Eventually there are some Boolean variables that will
indicate whether the queues are full or empty and some
actions to measure them. The original variables of each
process are also included within the module. The number
of states of the SMV code corresponds to the number of
1dentical sequential actions of a particular process within
the whole transaction scheme. The action execution and
state transition of each state is guarded with some local
variables. Figure 3 will help the code generation procedure
of the example. Now letus consider the ‘BusCpu’” example
stated in the study 2. There are two processes (CPU and
BUS) in the example along with some local variables and
some transactions between them. So, 2 modules will be
produced. Here we have described about only the CPU
module. As the local variables of each process in TSL will
be mn the corresponding module, CPU will have the
variables for status, add buff and data buff. The CPU

291

CPU BSU

Tail_cpu_bus+1 Head cpu bus+1
epu_bus

/ s \Hm_ !

Request or address

pushed from CPU

Tail cpu_bus

L,

P
>

Head bus epu+1

Tail bus_cpu
Tape_bus_cpu |

o4
*

Tail bus cpu+1

Head_bus_cpu

L,

Acknowledgemetn or
data pushed from bus

Fig. 3: Communication channel between two processes

module uses two pointers head cpu bus and
tail cpu bus for request or address sending queue and
two pomters head bus cpu and tail bus cpu for
acknowledgement and data receiving queue. This module
the empty _cpu_bus
empty_bus_cpu to check whether the queues are empty
by the empty bus_cpu
(head bus cpu = tail bus cpu) and empty cpu bus =
(head cpu bus tail ¢cpu bus). The
full bus cpuand full epu bus check whether the queues
are full or not by the statements full bus cpu
((tail bus cputl) med Q SIZE) = head bus cpu and
full cpu busi= ({tail cpu bustl) mod Q SIZE)
head cpu_bus. The first three actions of the CPU process
under different transactions are identical. So the number
of states for the 6 actions will be three. Since the other
two are not the same they will produce two more states.
So total number of states in the module will be five. We
numbered them as _cpu0, cpul, cpu2, cpuld, cpud.
The initial state is _cpu0. The action “send<req, 1> will
be executed only if full cpu bus is not true and the
current state is _cpu(). The action “recv<bus.ack>" will be
executed only if empty bus cpu is not true and the
current state is _cpul. If the current state is _cpu2 then

the action “status:=din.bool” will be executed. The action

also uses variable and

or not statements

variables

“send<add, 1, boolean>" will be executed only if
full cpu bus 1s not true and the current state 15 _cpu3.
The action “recv<bus.data>" will be executed only if
empty bus_cpu is not true and the current state 1s _cpu4

Res. J. Applied Sci., 3 (4): 288293, 2008

BEX]

File Prop YView Goto History Abstraction

Browser | Properties | Results I Cone l Usi

| Resut ||
false

74 BUSCPU. SMY

Property

[AG ((~_cpu. status) -=(EF _cpu status))) true

Source I Trace | Log |

File Edit Run View l

_bus.empty_cpu_bus:

_bus full_bus_cpu

_bus head_cpu_bus

_bus.ready

olo(lo|o|lo|—
= O[O0 |O0|0 |6

_bus.runnirg

LIl

Fig. 4: Verdicts and counter example

and a transition occurs from cpud to _cpul. When the
CPU sends arequest or address to the BUS, it places that
on the tail of the sending queue. When it wants to receive
an acknowledgement or data it collects the
acknowledgement or data from the receiving queue.

Propertiesin CTL and their verification: The SMV model
checker ig a self-contained C program as well as capable
of reading an input file and accepting command line
arguments. It has a line-oriented interactive mode,
allowing each SMV invocation to check an arbitrary
number of CTL formulas against a given specification.

Some properties of the bus protocols in CTL formula
are verified with the SMV model checker. For clear
illustration we have shown some of the properties as
follows:

SPEC AG (~_bus.ready-= AF (_bus.ready)) == if the
bus is not ready once, eventually the bus will be
ready. SMV shows the property is false.

SPEC AG (~_cpu.staius->= EF (_cpu.status)) == if the
CPU status is false, eventually the status will be true
in at least one node. SMV shows the property is true.
SPEC AG (_bus.ready and ~_bus.empty_cpu_bus -=
AX (_cpu.status and ~ cpu.empty_bus_cpu)) ==
once the BUS is ready to send data when the queue
is not empty; in all the next states the CPU receives
the data when the acknowledgement queue is not
empty. The SMV shows the property is false. The
properly verification results are shown in Fig. 4.

202

e

BUS

< opu_sstatus * ~ bus ready
CPFU

Request

Ready (false)

Status: = false

MNegative acknrrwsld pement

transaction mack
{
agenits
{
cpu : send{req, 1, boolean),
tecw({bus.ack),
{statns: ~dim);
: recv{tpu.req),
send(ack,0,boolean);

1
guard ~bus.ready & cpu.stetus;

bus

}

Fig. 5: Modeling a system by TSL from MSC

PERFORMANCE ANALYSES AND
COMPARATIVE STUDY

Now we will discusses about some of the major
achievements TSL have gained in specifying a system
behavior. We have used Line of Code Analysis for a
comparative look over the performance of the TSL and
SMV. For 4GT language LOC analyses is not an ideal
measure. But ag there is no visual tool for characterizing
the system specification and one have fto code the
specification manually we took this measure for granted.

Easy modeling a system behavior: As we have seen in the
examples in the siudy, the system specification of the
simple bus protocol is much easier to characterize by TSL
than SMV.

The code of TSL is much more gimilar to the system
behavior as it depicts only the transactions of the
communicating process, where as the SMV depicts all the
states and state transition of a system, which is not so
easy to characterize.

For clear illusiration lets have a look in the example of
Fig. 5. The negative acknowledged MSC in the example of
study, have three actions under CPU process and 2
actions under BUS process. The TSL code segment for
this MSC is stated beside. Comparing the two systems we
can easily understand the simplicity of TSL to characterize
a system behavior from MSC’s. Even for a naive user of
TSL can model asystem in TSL from MSC’s.

Res. J. Applied Sci., 3 (4): 288-293, 2008

350+
300
250
200
~150-
100-

50+

:

5

Ads

4
Number of communicating process

Fig. 6: Comparision between TSL and SMV

Reduction of Line of Code (ILOC): A significant
improvement of the effort, need to characterize the
system, has been achieved by TSL. We calculate the
umproverment by Line of Codes (LOC) analysis. We saw to
characterize the simple bus protocol in the example in the
study, TSL needs 41 lines to code where as SMV need
approximately 130 lines to code the same. So the reduction
of LOC 1s more then 55%. But if we mcrease the number of
transactions between the numbers of processes of the
system, the improvement ratio is not so high. Still the
umproverment 1s very much sigmficant. We have examined
this phenomenon with some mput data 1e. with some
system characterization by TSL and SMV and plot the
required LOC on the function of number of processes.
The result the experiment 1s shown in Fig. 6.

CONCLUSION

In this study, we have shown only the verification of
the Bus Protocols with our proposed system. We can
verify all the communicating protocols in the same way.
By T5L., with the help of MSC’s, we can specify all the
behaviors of the interacting components m the whole
commurication domair,

At present the transaction set ie. the schemes
modeled in the TSL form should be sequential depending

293

on transactions. TSL fail to characterize the non-
communicating system specification. For modeling a
system by TSL without MSC’s, requires expert user.

Though TSL needs MSC’s for better performance,
our observation is that we can model a whole system with
TSL without the use of MSC’s. Thus we can omit the all-
informal procedures to automate the Formal Verification
process. Our future concern 1s to establish TSL as a
stand-alone modeling language and to apply our system
1in communication and embedded system domain.

REFERENCES

Aloul, F. and K. Sakallah, 2000. Efficient verification of
the PCI local bus using Boolean satisfiability. In
proceedings of International Workshop on Logic
Synthesis (TWLS), http://eecs.umich.edu.

Holt, A., 1999. Formal verification with natural language
specifications: guidelines, experiments and lessons
so far. South Afr. Comput. I., 24: 53-257.

Halder, N., L. Ahmed and M. Asaduzzaman, 2005.
Modeling and Formal Verification of Communication
Protocols for RPC. B.Sc. Thesis. Computer Science
and Engineering Discipline, Khulna University,
Bangladesh.

Mokkedem, A., R. Hosabettu, M. Jones and
G. Gopalkrishnan, 2000. Formalization and analysis
of a soluttion to the PCI 2.1 bus transaction
ordering problem. Formal Methods Syst. Des. Arch.,
16(1) 93-119.

Rudolpha, E., T. Grabowski and P. Graubmann, 2008.
Tutorial on Message Sequence Charts MSC’96.
www remmes.supelec. fi/ren/perso/ bjouga/documents
/sdl_msc/biblio/mscS6tutorial pdf.

Talukder, K.H., 2003. An Introduction to Formal
Verification Based on SMV, 1n souvenir of National
Seminar on Computer And Information Technology,
Khulna University, pp: 66-71.

Talukder, K.H., 2003. Formal venfication of the alternating
Bit Protocol. In: Proceedings of International
Conference on Information and Technology (ICCIT),
Dhaka, Bangladesh, pp: 875-879.

