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Abstract: One of the most celebrated applications of character theory to pure group theory is Burnside’s
theorem which states that a group with order divisible by at most two primes is solvable. The proof of this

theorem depends on the properties of algebraic integers.

Key words: Pure group, prime, solvable, algebraic integers, character theory, burnside’s theorem, celebrated

INTRODUCTION

An algebraic integer is a complex number which is a
zero of a polynomial of the form,

3+, XM+ ey,

where, a,eZ for 0 <i <n-1 (Bumnsides, 1955).

And also a group G 1s solvable if and only if it has a
chain of normal subgroups (Feit, 1971).

Frequently, the word integer is used to mean an
algebraic integer and the elements of 7 are referred to as
rational integers. One of the most umportant properties of
the set of algebraic mtegers 1s that it 13 a ring. In order
words, sums and products of integers are integers
(Dornhoft, 1971).

Lemma 1: The rational algebraic mtegers are precisely the
elements of Z.

Proof: If aeZ, then ¢ 1s aroot of the polynomial X-¢ and
thus 18 an algebraic mteger.
Conversely, let 1i7s be an algebraic integer with 1, s€Z.

We may assume that (r, s) = 1. We have,
(r.s) +a,_ (t/sy +..+a,=0 (1)
Now multiplying (1) by S" and rearrange terms to obtain,
' =-8a, " +a, S+ +a, S (2)

We conclude that S/t*. However, since (1, ) = 1 this
yields, S = +1 and 1/s€Z as required.

Lemma 2: Let X = {u,,....c,} be a finite set of algebraic
integers. There exists a ring satisfying

(a) ZcSc<C

(b) XcS

{c) There exists a fimte subset, Y of S such that every
element of S 18 a Z-linear combiation of element
of ¥.

Proof: The integer ¢; satisfies an equation of the form,
a® = f(a,) (3

where, f; 13 a polynomial of degree n-1 with coefficient n Z.
Let

>

Y =40, 00,00 0 0<t <n_}

and Let S be the set of all Z- linear combination of
elements of Y. Using Eq. 3 and the power of ¢, may be
written as Z- linear combmations of 1, «,..., ™.

Tt follows from this fact that the product of any two
elements of Y lies in S and hence 3 is a ring. All of the
properties claimed for S are now clear.

Note that condition (c¢) of the above Lemma may be
paraphrased by saying that 3 1s finitely generated as

Z-module.
Theorem 3: Let 5 be a ring with Zc3cC. Suppose that 3
is finite generated as a Z-module, then every element of S

1s an algebraic mnteger.

Proof: Let seS and Let
Y ={y,..v.} S8

Have the property that every element of S is a Z-
linear combination of elements of Y we then have
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Foralliwithe, € 2.
Let A be the matrix (c;) and Let v be the column, col

(Yy--» ¥o) then
A, =35, and thus S 1s a root of the polynomial

F(x) = det (XI-A)

It follows that 3 13 an algebraic mteger and the proof
1s complete.

Corollary 4: Sums and products of algebraic integers are
algebraic integers by Isaacs (1956).

Proof: Let o and P be algebraic integers by Lemma 2, there
exists a ring S with Z=S=C such that &, p € S and S is
fimtely generated as a Z-module.

Since, ¢ + P and «p € S, it follows from theorem (3)
that they are algebraic integers as required.

RESULTS

Theorem 5 (Burnside, 1955): Let ¥ € Trr (G) and Let 3R be
conjugacy class of G with geft. Suppose that {y(1),|%}
=1. Then eitherg £ Z (y) or else y(g)=0

Proof: We know that
2[R ()
%(1)

18 an algebraic integer. Since, (¥(1),|R|) = 1 we may
choose rational integers uand v so that uy(1) +v|®| =1.
Thus 15 an algebraic integer. Since uy(g) 1s also integral,
it follows that ¢ = %(g) is an algebraic integer.
Supposed that ge Z(y), so that |(g)|<y(1) and |e|<1.

Let n = o (g) and Let E be the splitting field for the
polynomial X°-1 over Q in C so that weE.

Let ¥ be the Galoise group of E over Q. Since ¥(g) is
a sum of ¥(1) roots of unity, so 1s y(g) for each oe'P. It
follows that |¥(g)¥|<(¥)and |a’| <1 for oe¥. We have by
(Reiner, 1962) that |T]«’|. For each oeW, o° satisfies the
same rational polynomials that ¢ satisfies and hence is
mtegral. Therefore,

|BES (5)

89

Is an algebraic integer. However, P is clearly fixed by
all oeW and therefore peQ by elementary Galois Theory.
It follows from Lemmal that PeZ. Since, |B| = 0 and hence
a° = 0 for some 0. Therefore,

_ (e
%)

and ¥(g)= 0. The proof 1s complete.

Theorem 6: Let |G| = P* o where P and q are primes then
G is Solvable (Burnsides, 1955).

Proof: We use induction on |G|. We may assume |G |>1
and choose a maximal proper normal subgroup N. If
N=1, then by the inductive hypothesis, N and G/N are
solvable and thus G 1s solvable and the subgroup of G.
We may choose g€ Z(p), g#z1. Then (Clg|) = |G: C(g)|
Divides |G:P|,

Which is the simple group G is abelian and the proof
1s complete.

CONCLUSION

It should be emphasized the fact that

%) C|@))
w0

is an algebraic integer does not follow from the fact that
%(g) is integral, since division of an integer by an integer
does not usually result in an integer.
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