Research Joumal of Applied Sciences 3 (1): 5-9, 2008
Medwen

EAL e i ¥ [SSN: 1815-932X
GEnENINnNe © Medwell Journals, 2008

On the Software Complexity Measures of Bubble Sort Algorithm

'S.0. Olabiyisi and *0.A. Adewole
"Department of Computer Science and Engineering,
Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
“Department of Computer Science, The Polytechnic, PM.B 21, U.LP.O., Ibadan, Nigeria

Abstract: In this study, different software complexity measures are applied to Bubble sort algorithm. The
intention is to study what kind of new information about the algorithm the complexity measures (Halstead's
volume and Cyclomatic number) are able to give and to study which software complexity measures are the most
useful ones in algorithm comparison. The results explicitly show that Bubble sort has the least Halstead’s
Volume and Program Difficulty when programmed in Assembly language and the least Program Effort when

programmed in Java.

Key words: Software complexity, bubble sort, Halstead complexity measure, cyclomatic complexity measure

INTRODUCTION

A programmer usually has a choice of data structures
and algorithms to use. Choosing the best one for a
particular job involves, among other factors, 2 important
measures:

* Time complexity: How much time will the program
take?

¢+ Space complexity: How much storage will the
program need?

A programmer will sometimes seek a tradeoff
between space and time complexity. For example, a
programumer might choose a data structure that requires a
lot of storage in order to reduce the computation time.
There is an element of art in making such tradeoff, but the
programmer must malke the choice from an informed point
of view. The programmer must have some verifiable basis
on which the selection of a data structure or algorithm.
Complexity analysis provides such a basis.

Complexity is a measure of the resources that must be
expended in developing, mmplementing and mamtaiing
an algorithm. Productivity 1s chiefly a management
concern while reliability is a quality factor directly visible
to users of software systems. These externally visible
attributes of software processes and products are
strongly influenced by engineering attributes of software
such as complexity. Well-designed software exhibits a
minimum of unnecessary complexity, unmanaged

complexity leads to software difficult to use, maintain
and modify. Tt causes increased development costs and
overrun schedules.

Algorithms are frequently assessed by the execution
time and by the accuracy or optimality of the results. For
practical use, an important aspect is the implementation
complexity. An algornithm, which is complex to inplement,
requires skilled developers, longer implementation time
and has a higher risk of implementation errors. Moreover,
complicated algorithms tend to be highly specialized
and they do not necessarily work well when the problem
changes (Akkanen and Nurminen, 2000).

Algorithms can be studied theoretically or
empirically. Theoretical analysis allows mathematical
proofs of the execution times of algorithms but can
typically be used for worst-case analysis only. Empirical
analysis is often necessary to study how an algorithm
behaves with typical input (Sedgewick, 1995).

Ball and Magazine (1981) listed criteria for the
comparison of heuristic algorithm that in additon to
execution time include ease implementation, flexibility
and simplicity. Controlling and measuring complexity is
a challenging engineering, management and research
problem. Metrics have been created for measuring various
aspects of complexity such as sheer size, control flow,
data structures and intermodule structure.

Complexity measures can be used to predict critical
information about reliability and maintainability of
software system from automatic analysis of source code.
Complexity measures also provide continuous feedback

Corresponding Author: S.0. Olabiyisi, Department of Computer Science and Engineering,
Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria

Res. J. Applied Sci., 3 (1): 5-9, 2008

during software project to help control the development
process. During testing and maintenance they provide
detailed information about software modules to help
pmpoint areas of potential instability.

SOFTWARE COMPLEXITY MEASURES

Software complexity is one branch of software metrics
that 1s focused on direct measurement of software
attributes, as opposed to indirect software measures
such as project milestone status and reported system
failures. Current military metrics programs emphasize
non-complexity metrics that track project management
information about schedules, costs and defects. While
such project tracking measures are necessary to any
substantial engmeering effort, they lack
predicive power and are thus madequate for sk

software

management. Complexity measures can be used to predict
critical information about reliability and mamtainability of
software systems from automatic analysis of the source
code. Complexity measures also provide continuous
feedback during a software project to help control the
development process. During testing and maintenance,
they provide detailed information about software modules
to help pinpoint areas of potential instability.

Many of the factors affecting software quality that
have been identified by researchers can be seen in part as
functions of the complexity and size of the program and
the capabilities of the programmers and managers. This
will include, but is not limited to, testability, efficiency,
legibility and structuredness.

There are a number of ways to quantify complexity
in a program. The best-known metrics, which provide
such feature, are McCabe's (1976) cyclomatic number
and Halstead's (1977) volume. These metrics have been
extensively validated and compared (Aggarwal et al,
2002; Ramil and Lehman, 2000, Bezier, 1984; Curtis, 1981,
Schneidewind and Hoffinan, 1979).

Halstead’s complexity measures: Halstead argued that
algorithms have measurable characteristics analogous
to physical laws. His model is based on 4 different
parameters: The number of distinct operators (instruction
types, keywords, etc.) in a program, called nl; the number
of distinct operands (variables and constants), n2; the
total number of occurrences of the operators, N1 and the
total mumber of occurrences of the operands, N2. The sum
of nl and n2 1s denoted as n while the sum of N1 and N2
is called N. From those four counts, a number of useful
measures can be obtamed. The mumnber of bits required to

specify the program is called the volume V of the program
and 1s obtained through the equation

V=Nlog2n

The program level, which is the difficulty of
understanding a prograrm, 1s calculated by

L = (2n2)/(n1N2)
and the intelligence content of a program is given by
[=L =V

In an attempt to include the psychological aspects
of complexity mn the measures, Halstead studied the
cogmtive processes related to the perception and
retention of simple stimuli. As reported by Olabiyisi (2006)
and Olabiyisi ef af. (2007), the mean number of mental
discriminations per second in an average human being,
also called the Stroud number, i1s between 5 and 20.
Halstead uses 18 as a reference point for his studies. In
his model, the number of discriminations made in the
preparation of a program, called effort, is given by

E=V/L
All of these measures are valid under the assumption

that the program 1s “pure,”
programming practices.” Halstead defines six classes of

Le., free of so-called “poor

impurities, among them, synonymous operands,
unfactored expressions and common sub expressions.
The complete description of these and other impurities
is beyond the scope of this study. However, for the
programs used for this study, all recognizable impurities
were eliminated prior to obtaimng the comresponding
Halstead measures.

Cyclomatic complexity measures: Cyclomatic complexity
15 the most widely used member of a class of static
software metrics. Cyclomatic complexity may be
considered a broad measure of soundness and confidence
for a program. Introduced by McCabe (1976) it measures
the number of linearly independent paths through a
program module. This measure provides a single ordinal
number that can be compared to the complexity of other
programs. Cyclomatic complexity is often referred to
simply as program complexity, or as McCabe’s complexity.
It is often used in concert with other software metrics. As
one of the more widely-accepted software metrics, it is

Res. J. Applied Sci., 3 (1): 5-9, 2008

"0

-1

s

Uy
5

—=—= Upward flow -6

—— Downward flow <-7
-9
-10
<
Cyclomatic complexity = 7 12

Essential complexity = 1 13
Design complexity' = 4

See the complementary
techmological section for
the definitions of the forms

Fig. 1: Connected graph of a simple program

intended to be independent of language and language
format. Cyclomatic complexity has also been extended
to encompass the design and structural complexity
of a system (McCabe et al, 1989, Olabiyisi, 2006,
Olabiyisi et al., 2007).

The cyclomatic complexity of a software module is
calculated from a connected graph of the module (that
shows the topology of control flow within the program):

Cyclomatic Complexity (CC)=E—-N+p

Where,

E = The number of edges of the graph.

N = The nmumber of nodes of the graph.

P The number of conmected components.

To actually count these elements requires
establishing a counting convention (tools to count
cyclomatic complexity contain these conventions). The
complexity number is generally considered to provide a
stronger measure of a program’s structural complexity
than 1s provided by counting lines of code. Figure 1 1s a
connected graph of a simple program with a cyclomatic
complexity of seven. Nodes are the numbered locations,
which correspond to logic branch points; edges are the

lines between the nodes.

Experiment with bubble sort algorithm: The bubble sort
is the oldest and simplest sort in use. Unfortunately, it's
also the slowest. The bubble sort works by comparing

each item in the list with the item next to it and swapping
them if required. The algorithm repeats this process until
it makes a pass all the way through the list without
swapping any items (in other words, all items are mn the
correct order). This causes larger values to "bubble" to
the end of the list while smaller values "sink" towards the
beginning of the list.

The bubble sort 1s generally considered to be the
most inefficient sorting algorithm in common usage.
Under best-case conditions (the list is already sorted), the
bubble sort can approach a constant O(n) level of
complexity. General-case is an abysmal O(n”). While the
insertion, selection and shell sorts alse have O(n’)
complexities, they are significantly more efficient than the
bubble sort.

For the experiment, we used the complexity finder
machine designed by Olabiyisi (2006) to calculate the
complexity measures. To do so, the following actions were

taken:

¢ The studied algorithm was coded using Assembly
Language, C, Java, Pascal, Visual BASIC resulting in
5 programs. for each algorithm.

» The same programming style (modular programming)
was employed in the coding.

» All the programs were run on the same computer.

» Operands, operator, keywords and identifiers were
similarly defined for all the programs.

RESULTS AND DISCUSSION

Table 1 presents complexity measures of different
implementation languages for Bubble sort algorithm.

Figure 2 Plots the graph of Halstead’s volume for
different implementation languages for Bubble sort
algorithm.

Figure 3 gives the graph of program difficulty for
different implementation language of the algorithm.
While, Fig. 4 presents the graph of Program Effort for
different 1mplementation languages for the studied
algorithm.

There are interesting points to observe about these
graphs. Figure 2 shows that Bubble sort has the highest
Halstead’s Volume when code in C. By implication, the
graph shows that Bubble sort is best implemented in
Assembly language followed by Pascal, Visual Basic, JTava
and C m that order.

Figure 3 indicates that if Program Dafficulty is
to be considered, Bubble sort algorithm implemented
in Assembly language is the best while Bubble sort
implemented in C 18 the worst.

Res. J. Applied Sci., 3 (1): 5-9, 2008

Table 1: Bubble sort Complexity Measures by different Imp lementation Languages

Results of implimentation universal machine for complexity

Algorithm Program Program Program Cyclomatic
name Language Vol. (V) ditficulty (D) effort. (E) no. V(@)
Rubble sort Assembly language 144 37 5328 4
Bubble sort C 241 265 63865 4
Bubble sort Java 233 252 58716 4
Bubble sort Pascal 163 107 17441 4
Bubble sort Visual basic 179 100 17900 4
70000 For all the implementation languages, the cyclomatic
S 60000 number 1s the same (1.e.4).
g s0000-
= CONCLUSION
40000
g”om' This research has considered software complexity
20000 measure experiment with Bubble sort algorithm. We
10000 study the Bubble sort algorithm by computing the
0 Halstead’s Volume (V), the program Effort (E), the program
1 21 tat:: 4 3 Difficulty (D) and the cyclomatic number V (G) using
Tmplemeatation langsiages different implementation languages.
Fig. 2: Graph of different implementation of the bubble Software complexity —measures mught help
sort algorithm practitioners to choose, out of a large number of
alternatives, the algorithms that best match their needs.
70000 - Understanding the trade-off between implementation
2 60000+ and performance would give a firmer basis to decision-
2 500001 making.
A 40000
g 30000 REFERENCES
Eh 20000+ .
A 10000 Alkkanen, J. and I K. Nurminen, 2000. Case-study of the
0 evolution of routing algonthms in a network planning
Asgembly C Java Pascal VB tool. T. Sys. Software, 58: 181-198.
Implementation languages

Fig. 3: Graph of program difficulty for different
mmplementation of the bubble sort algorithm

70000
& 60000
% 50000
2 40000

30000
520000
& 10000

1 T
Aszembly C Java Pascal
Implementation languages

Fig. 4 Graph of program effort for different
mmplementations of the bubble sort algorithm

In Fig. 4, we discover that considering the
program effort, Bubble sort algorithim 1s best implemented
in Java followed by Pascal, C and worst implemented in
Assembly language.

Aggarwal, K K., Y. Singh and T K. Chhabra, 2002. An
Integrated Measure of Software Mamtamability.
In: Proceedings of Annual Reliability and
Maintainability Symposium, TEEE.

Ball, M. and M. Magazine, 1981. The design and analysis
of heuristics. Networks, 11: 215-219.

Bezier, B., 1984, Software System Testing and
Quality Assurance. Ven Nostrand Reinhold, New
York.

Curtis, B., 1981. The Measurement of Software Quality
and Complexity, Software Metrics. A. Perlis ef al.
(Eds.). MIT Press, Cambridge.

Halstead and H. Maurice, 1977. Elements of Software
Science, Elsevier North-Holland, New Yorl, pp: 54-67.

McCabe, T .., 1976. A Complexity Measure. IEEE. Trans.
Software Eng., 2 (4): 308-320.

McCabe, Thomas J. and Charles Butler, 1989. Design
Complexity Measurement and Testing. Commun.
ACM., 32: 1415-1425.

Res. J. Applied Sci., 3 (1): 5-9, 2008

Olabiyisi, S.0., 2006. Universal Machine for Complexity
Measurement of Computer Programs. Ph.D Thesis

Ladoke Akmtola Umversity of Technology
Ogbomoso.
Olabiyisi, 8.0, RA. Ganiyu, M.O. FEkundayo,

0.0, Okediran and O.0O. Oderinde, 2007. Using
Software Complexity Measures to Analyze
Algorithms-An Experiment with Selection Sort
Algorithm: Ghana J. Sci. C.8.1.R.-INSTI (In Press).

Ramil, I.F. and M.M. Lehman, 2000. Metrics of Software
Evolution as Effort Predictors-A Case Study. In
Proceedings of International Conference on Software
Maintenance, IEEE.

Sedgewick, R., 1995, Algorithms in C++. Reading, MA:
Addison-Wesley.

Schneidewind, N.F. and HM. Hoffmman, 1979. An
Experiment 1 Software Ermror Data Collection and
Analysis. TEEE . Trans. Software Eng., 5(3): 276-286.

