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Abstract: This study considers a Mathematical model of the dynamical behaviour of Tuberculosis disease
the Upper East region of the Northern part of Ghana. The equilibrium points of the model system are found and
their stability 1s investigated. The model exhibits two equilibria namely, the disease-free and the endemic
equilibrium. Using stability theory and computer simulation, it 1s observed that population determine the
mfection rate of tuberculosis hence the higher the population density, the greater the risk of mstability of the

disease free equilibrium.
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INTRODUCTION

Tuberculosis which is deadly disease is on the rise
and revisiting both developed and developing world.
Globally, it 1s the leading cause of death than any other
infectious disease like malaria, HIV, Schistosomiasis,
Typhoid fever etc. Tuberculosis kill more adults each
year, more women die of tuberculosis than other disease.

Mycobacterium  tuberculosis 1s the bacterma that
causes Tuberculosis (TB) and has been present in the
human population since 2400BC. TB is an airborne
mfection that primarily affects the lungs. TB can be
spread by coughing, sneezing, laughing or singing
repeated exposwre to someone with TB disease 1s
generally necessary for infection to take place. TB 1s
always spread by person(s) with tuberculosis of the lungs
who are not been treated, these people cough out
tuberculosis in droplet(s) nuclei into the air. This
droplet(s) nuclei are then inhale into the respiratory tract
of another person. The mycobacterium tuberculosis then
starts to grow. If the organism grows, they cause a small
area of bronchopneumonia, the organism then spread to
the lymph node in the chest. They then carried by the
lymph mto the blood. The blood spreads to the lymph
nodes in the chest. The blood spreads the organisms to
the whole body in the 1-2 months whiles it is happening
the body slowly developing immunity to the organism,
when this immunity has properly developed usually the
body kills the orgamsm and the infection heals otherwise
not healed.

According to Miranda (2003) he emphasized that the
resurgence of tuberculosis and other infectious diseases
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in the last decade has been closely linked with
envirommental and social changes that compromised
peoples immune systems and the social structures that are
used to defend against disease; in 1993, World Health
Orgamization (WHO, 2003) declared tuberculosis as a
global emergency i which approximately one third of the
whole world is attacked by the tuberculosis. Tt was
revealed that 99% of tuberculosis death all over the world
occurs 1n developing countries.

Waaler et al. (1962) were the first people that’s
started mathematical modeling of tuberculosis,
transmission dynamics of tuberculosis, their model
comprise of a linear system of difference equations.
The importance of their research is that it provided
researchers with the basics starting point in the modeling
tuberculosis dynamics in communities. Tn ReVelle et al.
(1967) extended the work of Waaler by introducing a
cluster transmission model and incorporated both the
linear and logistics growth rates.

Most recently several investigation have concern
themselves with modeling density-dependence dynamic
of tuberculosis disease, notable and then are Gao and
Hethcote (1992), Roberts and Jowett (1996) and
Asematimaba (2005) to mention a few.

This study 15 an extension of the study of Asmatimba
(2005) to the mathematical model of the dynamical
behaviour of tuberculosis disease in Bawku District in
the Upper East Region of Ghana, this is mamly to give
suggestions on who to check, control, minimized,
tuberculosis m Bawku

preventing and eradicate

Municipality.
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Bawku Municipality is in the Upper East Region of
Ghana. It 15 located at the extreme Northeastern part of the
Upper East Region. It shares international boarders with
Burkina Faso to the North and Togo to the East. Since
this municipality share common boarders with these two
neighbouring Countries, it has certain Political and Social
challenges. Some families have members in these
neighbouring Countries which leads to free movement of
People and this bring about high population density and
health risk which is associated with overcrowding. There
1s high level of disease incidence, hence there 1s that need
to look into the health condition of the people living in
Bawl Municipality.

THE MODEL

We consider the model of Song et al. (2002) and
Asematimaba (2005) and we have the following
assumptions.

All people are likely to be mfected by infectious
individual in case of contact:

Bawku Municipality has a fixed area size and only the
population size is varying.

All immigrants and newborn are uninfected hence
they join the susceptible group.

The population size is N(t) at time t, is divided into
four subclasses of susceptible S(t), infective I(t),
(also assumed to be infectious), latently infected/
exposed  individuals  TL(t), recovered/tested
individuals T(t) and A the total area of Bawlku
Mumnicipality.

In the model the following parameters are used: A is the
recruitment rate, u is the per capital natural mortality rate,
d 1s the tuberculosis-induced mortality rate, B, is the
probability that a susceptible individual becomes infected
by one infectious mdividual per contact per umt time.
B, is the probability that a recover individual becomes
infected by one infectious individual per contact per unit
time, k 1s the rate of progression to active tuberculosis,
1, is the recovery rate of the latent class, 1, is the recovery
rate of the infectious class and ¢ is the per capital contact
rate.

In view of the above assumptions and inter-relations
between the parameters, we have the following system of
differential equations:

ds
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ANALYSIS OF THE MODEL

In this study, we present the results of stability
analysis of the equlibrivm point.

Equilibrium of the model: The governing system of
equations of the model-[(1e. Eq. 1-4] has two non-
negative equilibrium points namely:

E; (A/p, 0,0,0) the disease-free equilibrium; Here we
have I' = L" = 0 and we define S, = A/u as the
asymptotic carrying capacity of the population.
E"(S*, L. T', T") the endemic equilibrium.

Stability of the equilibra: Now to determine the stability
of By and E', the following variational Jacobian matrices
are computed corresponding to equilibrium  pomts
E,and E"
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From M, it 18 clear that E; 15 asymptotically stable
provided
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ie, Rg»l, the disease dies out and wipe out under
condition the equilibrium E does not exist. If R;>1, then
E’ exists and the infection is maintained in the population,
hence to mimimize the disease the population of the
infections and latently infected must be very small, this
implies that dL/dt<0 and dI/dt<0. With these conditions
we can mimimize the disease if and only 1f

A p,cS+p,eT k
M+k+r Jp+d+r

RESULTS AND DISCUSSION

We give numerical simulation of the equilibrium and
stability conditions of the goverming equations of the
model (1e,Eq 1-4). Following Asematinba (2005),
Song et al (2002), Styblo (1991), Feng et al. (2001),
Castillo-Chavez and Song (2002) and WHO (2003)
below are some of the parameter values used A =3.805,
u=00185 1 =1, =15 p, =p;=20,¢=2,d=0365,
k = 00039, R'=300,=T1=90, $'=5000, 1."=1000,
T =1000.

The results of numerical simulation are shown
graphically n Fig. 1-4.

In Fig. 1 the distribution of susceptible population
with time in respect to the area occupied by the
susceptible population 1s shown. We observe that the
susceptible population increases as time increases, this is
as a result of the recruitment rate, A, through birth and
immigration. Also as the size of the area occupied is
mcreased the mumber of susceptible will also increase
because of the reduced disease mncidence and recruitment.

Figure 2 shows the effect of size of the area
occupled, A on the latent or exposed population with
respect to tume. It 1s observed that when the area occupied
by the latent or exposed population increases with time,
there is decrease in the number of latent population, this
is as a result of the fact that when the area is big the
contact rate of the susceptible with infectious individuals
will be small We further observe that with lower
population density, the number of exposed individual
increases.

It 18 observed from Fig. 3 that the number of
infectious individuals declines in a small time interval
urespective of the area size. It 1s also seen that the
infected individuals declined irrespective of the area size.
This can be as a result of congestion in the communty,
which may lead to higher rate of infection and hence a big
number of susceptible become mfected and progress to
infectious stages.

Figure 4 has to do with the effect of size of the area
occupied, A, on the treated population with respect to

Susceptibles with change area A
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Fig. 1. The effect of size of the area occupied, A, on the
susceptible population with respect to time

Exposed popuatio with change area

Fig. 2: The effect of size of the area occupied, A, on the
exposed population with respect to time

1007  Infectives with changing arca A
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Fig. 3. The effect of the size of the area occupied, A, on
the infective population with respect to time

Time

Fig. 4. The effect of the size of the area occupied, A, on
the infective population with respect to time

time. We observe that there is decrease in the treated as
the area occupied increases.
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CONCLUSION

In the study, a mathematical model of the dynamical
behaviour of tuberculosis n Bawku in the Upper East
Region of the Northern part of Ghana is studied By
analyzing the model, we have found a threshold parameter
Ro. Ttis noted that when Ro <1 then the epidemic will die
out and when Ro > 1 the disease will persist in the
population and become endemic. The model has two non-
negative equilibria namely E; (A/u, 0,0,0), the disease free
equilibrium are E' (3", ", ", T") the endemic equilibrium.
It 15 found that population density determines the
infection rate of tuberculosis because of the level of
respiratory contact in a community due to a high
population density. Conclusively, the higher the
population density, the greater the risk of instability of the
disease-free equilibrium which implies that there is a
possibility of an epidemic in Bawku district.
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