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Abstract: In this study, we made use of a particular linear regression model for three regression and
mean per unit estimators and from the estimated mean square errors obtained on these estimators through
simulation, we observed that one of the newly proposed regression estimators performed better and hence,
preferred.
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INTRODUCTION measure. Examples of these skewed populations are

sample of farms by size, distribution of sales of retail trade

Monte carlo technique according to Kendall and in establishment and family income distribution of the
Buckland (1982) is a way of obtaining the solution of  population.

mathematical problems in a stochastic context through Here, both the sigma (0), alpha (), beta (B) and t
sampling experiments. Tt is the solution of any  values are specified, where t controls the dependence of
mathematical problem by sample methods. The procedure the variance of y on the value of x. Tt is always regarded
is to conduct an artificial stochastic model of the as a non-negative constant.

mathematical process and then to perform sampling Also, a statistical transformation was done from a
experiments upon it. normal distribution to uniform distribution which made x,

to be distributed as gamma since the normal distribution
On the model used: The linear regression model used in is the most important distribution in statistics which is
this study is of the form: likely to provide a good model for a variate when: -

y,=Px, +u.1=L2.. N ¢  There is a strong tendency for the variate to take a
central value.

Where x, follows a gamma distribution, u, is normally »  Positive and negative deviations from the central

distributed with mean 0 and variance (WWx) = o°xand t value are equally likely. _ _
is said to be the variance function usually between »  The frequency of deviations falls off rapidly as the
0and 2. deviations becomes larger Cooke et al. (1982).
The gamma distribution with parameter o, P and

probability density function, The following estimators are considered for comparisons: -

B » Y. mean per unit

u’rlefﬁx _ _ _ —
[ia) Yoo =¥ —BE-X)

was used, * o yusy B ) and

o o Yar =Y -BE-X)
o> 0,p>0,E(X)=—,E(Y)=o and Var(X)=—
b P Mean square error of the conventional estimator, v, :
Let N be the population size, n° and n be the first sample
and subsample drawn, X and X be the sample mean of
the first sample and subsample drawn, respectively.

Where, ¢ and P are defined as a “scale” and “shape”
parameters, respectively while E(X) and E(Y) are the
means of X and Y population.

In sample survey, gamma distnbution 1s a distribution
that has skewed population 1n which a small proportion
of the sampling umits in the population may account for a
high proportion of an aggregate or average being

X=X(1+A)and y=Y(1+A,) . Then,

11 1
Mse(§) = (- Lyt~ (Lyst . a8 N = oo, /N -0
se(y) (n N)Sy (H)Sy
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and ¥, =¥-PB(X-X). Then,

Mse(Yy,) # v(¥,,) = [y - P(x - X)]
=v(y)+ PR X - 2Pcovi¥, X - X)
=v(y)+ B [vE) + v(x) - 2cov(x - X)]
= 2P[eov(X, ¥) — coviX, Y.

Using the unconditional expectation E, and
conditional expectation E, over the first sample and the
second subsample given the first sample, unconditional
variance V, and conditional vanance V, of the first sample
and the second subsample given the first sample, then,

.1
v(y):—szy.
n
v(i):lszx.
n

. 1
v(x)=—s’.
n
= 1 2
cov(x,X')=—s",.
n

coviX,y) = lsxy.
n

- 1
cov(X,Yy)=— 5.
n

Then,

_ 1 1., 1 1., .
Mse(y,,) = (;—ﬁ)s y +(;—;)(s .~ 2Bs,, +Bs,)

Okafor (2002) as N = =, 1/N = 0 Then,

n

“ys® - 2Bs,, +B).
n

_ 1
Mse(y )~ (_,)525, +(
i} n

Mean square error of v, : Let,

i:e§+(179)?,\?:ey+(178)§*:9:lﬁl-
n N

AsN -2, 1/N-0 g— 1 Then
n’

1

X =X(1-(—
n -1

1AL

and

= 1

V =Y(1-({—)A_

¥ = Y- (oA,
Y =¥ —Bx —X). Then,

Mse(Ty, )~ v(Ty) = vy —BE -X)]
= vy 1+ PHE —X)—2Pcov(y X —X)
= vy )+ PIv(E) + vE) — 2cov(X —X)]
—2B[cov(X,¥ ) - cov(X, ¥ ).

Where,

V)=

2.2
8%
nfl) ¥

ViE) = Ly,
nn -1

_ 1
v(x)=—s’.
n
v — 1 1
cov(X X'} = = (=¥,
n n-1
- 1. 1
cov(X ,¥ )= —(—)'s,,.
nn-1

o 1
oV F) = (s,

n'-1
Then,
_ 1.1 n-n_ 1
Mse(Fy, )& (SN ——)'s’, + (——)——)"
n n'-1 nn  n-1
2 2,2
(s°, —2Ps,, +P%°,)
Mean square error of ¥, : Let,

. ek 1

X=(1+0x"-06xY=(1+0)y -0y, 0=—-—.
n N

AsN - o, 1/N - 0. Then,

e:l,,i**:i(n( ,1 A )
n n+1 =
and
e = 1
y =Y+ (A
n+1 7
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V=Y —PE —X) Then,

Mse(¥y, 0= V(T g,) = V[?M - B(XM -x)]

=v{y ) +BE XD - 2Peov(y X -X)

ek

= vy )+ PE )+ v(X) - 2oov(X - X))

— 2Blecov(X ¥ )—cov(X,¥ ).

Where,
e 1 1
viy ):*(,7)2525,-
nn-+l
" 1. 1
viXx )=—(— )ZSZX.
nn+l
V(?):lrszx.
n
cov(iw,i'):l,( ,1 e,
n n+1
et 1 1
cov(x Y )= (s,
nn-+l
P 1 1
cov(X, =—{——»_.
x.y ) H,(H,H)Xy
Then,
_ 1 1 n-n_ 1
Mse(yy, )~ (=) )2525,4‘( — )~ ¥
n n+1 nm  n+1

(szy - 2Ps,, + BZSZX).
Bias(y,,) = Bias(y,, ) = Bias(y,,)=0

Therefore,

Dyis?, — 2ps,, + Bs’).
n

_ 1 n'
Mse( ) & (8", +(—
' '

_ 1 1 n—n 1
Mse(yy, )~ (S0 ——)'s", +(—
n n-1 n'n

(52y —2Ps, + stzx)

_ 1 1 n-n,_ 1
Mse(yy, ) = (=)= )2525, +{(——)—
n n+1 nn n'+1

(s?, — 2PBs,, +P%s%).

)2

937

Here, the coefficient of (l)sz and
o7

(Il TH)(SZY _ 2BSXY n BZSZX) -
nn

o +land+1 for yy,

. 1 1 _
(=) and (———)° for
n -1 n -1

M ¢ ! ) and (L)2 for v
n'+1 n+1 Yaz

One could see that their differences lies on these
coefficients.

In order to know the effect of the various values of
B used, this research would focus on the formulae above
instead of equivalent sample formulae stated below:-

Ty

n n

_ 1 n' n-1 -
Mse(¥y, ) % ()87, +(—, B, 05
n n -2

_ 1 1 n'-n
Mse(Yy, ) & (—N——)'s", + (——)
n n-1 nn

n—1
n72)(n'

( -5

_ 1 1 n-n_n-1
Mse(y,, )~ (T)(,i)zszy +H——X
n n+1 nn n-2

)

1 ~
(H,H)zszy(lfpz)-

Under what condition would an estimator of this kind be
preferred?: An estimator of this kind among others being
considered here would be preferred if

+ Tt has the least estimated bias.

It has the least estimated mean square error.

» It has the least estimated mean square error ratio over
mean per unit estimator which must be less than or

equals 1 and.
¢ Tthas the highest percentage relative efficiency.

RESULTS AND DISCUSSION

Using the gamma distribution described above,
where n'=140,n=2,20,40,80 and 100, = 1,23 and =1,2
and 3. Then, the estimates obtained using these
information are shown in the Table 1-3.
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Table 1: Estimated mean square error of ¥ a0V and Yo whenn'=140,n=2, 20, 40,80 and 100, x=1and 3=1,2 and 3

n' n o 5 mse(y) mse(¥yp) mse(yy, ) mse(¥y,)
140 2 1 1 1.8242 1.8552 9.6x107° 9.3x107°
2 27.5348 27.8381 0.00144 0.00140
3 123.5017 123.8050 6.41x1073 6.23x1072
140 20 1 1 0.0333 0.0419 2.2x107¢ 2.1x10°¢
2 0.5649 0.5743 2.97x107° 2.89x107°
3 2.9739 2.9833 1.54x107* 1.5%107*
140 40 1 1 0.0165 0.0220 1.14x107¢ 1.11x107¢
2 0.2804 0.2869 1.49x10~° 1.44x10~°
3 1.4759 1.4824 7.7%107° 7.5%107°
140 80 1 1 0.0108 0.0118 6.1x107¢ 5.9x10°¢
2 0.1460 0.1472 7.6x107¢ 7. 4x107¢
3 0.7181 0.7193 3.7x107° 3.6x107°
140 100 1 1 31.3132 34.1866 1.77x1073 1.72x1073
2 0.1203 0.1209 6.26%107° 6.08x107¢
3 0.6009 0.6015 3.11x107° 3.03x107°
Table 2: Estimated mean square error of V. %m0 Vau and Vo when n'=140,n=2,20, 40, 80 and 100, x =2 and 3 =1, 2 and 3
n' n % p mse(y) mse(yyp ) mse(yy, ) mse(¥yp)
140 2 2 1 1.0562 1.2387 6.4x107° 6.23x107°
2 T7.9533 8.1357 4.2x107* 4.09x10~*
3 33.7278 33,9102 1.76x10~2 1.71x1072
140 20 2 1 0.0703 0.0849 4.39x10~¢ 4.23x107¢
2 1.3694 1.3854 7.17x107° 6.97x107°
3 71739 7.1894 3.72x107% 3.62107%
140 40 2 1 1.7629 2.2500 1.2x107° 1.1x107°
2 0.2495 0.2543 1.32x107° 1.28x10~°
3 1.2757 1.2807 6.63%x107° 6.44x107°
140 80 2 1 0.0248 0.0268 1.38x107¢ 1.34x107¢
2 0.3354 0.3373 1.75x10~° 1.70x10~°
3 1.6836 1.6856 8.7x107° 8.5x107°
140 100 2 1 0.0241 0.0247 1.28x10~¢ 1.24x10~¢
2 0.3590 0.3597 1.86x10~° 1.81x10~°
3 1.8133 1.8140 9.4x107° 9.1x10~°
Table 3: Estimated mean square error of ¥ a0V and Yo whenn'=140,n=2, 20, 40, 80 and 100, x =3 and 3 =1, 2 and 3
n' n o 5 mse(y) mse(¥yp) mse(yy, ) mse(¥y,)
140 2 3 1 0.0673 0.1045 5.4x107¢ 5.3x107°¢
2 2.6259 2.6631 1.38x10~¢ 1.34x10~¢
3 151234 15.1605 7.8x107% 7.60x107*
140 20 3 1 0.2157 0.2313 1.7%107° 1.16x10~°
2 2.7557 2.7724 1.43x107* 1.39x107*
3 13.3728 13.3895 0.00069 0.00067
140 40 3 1 0.0570 0.0618 3.20x107° 3.11x107°
2 0.8651 0.8700 4.5%107° 4.38x10~°
3 4.4034 4.4082 2.28x107* 2.22x107*
140 80 3 1 0.0514 0.0526 2.72%107° 2.65%<107¢
2 0.7721 0.7733 4.0%107° 3.89x107°
3 3.8821 3.8833 2.01%107* 1.95%107*
140 100 3 1 0.0245 0.0252 1.3%107° 1.27x10~¢
2 0.3563 0.3570 1.85%x10~° 1.80%x10~°
3 1.7941 1.7947 9.29x10~° 9.03x107°
From Table 1-3, wrrespective of the values of « and REFERENCES

B, the unique findings are that double sampling regression
estimator, ¥, has:

¢ The least estimated mean square error.

¢ The least estimated mean square error ratio over
mean per unit estimator which is less than 1.

¢ The highest percentage relative efficiency

. mse(y,, ) <mse(y,, )< mse(y)<mse(y,,). Hence,

double sampling regression estinator, V., 1s

preferred.
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