Medwen

[+

Research Journal of Applied Sciences 2 (9): 1012-1015, 2007
ISSN: 1815-932X
© Medwell Journals, 2007

nline

Development in Source Line of Code, Function Point Analysis
and User Case Point Analysis-A Review

'D. Lakshmanan, *V.Gunaraj, *M. Karnan, *R. Sivakumar
"Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
*RVS Engineering College, Coimbatore, Tamil Nadu, India
*Tamilnadu College of Engineering, Coimbatore, Tamil Nadu, India

Abstract: During the past three decades there had been some significant developments in effort estimation, size
of the software, cost estimation methodology. This study describes development in Source Line of Code
(SLOC), Function Point Analysis (FPA) and User Case Pomt Analysis (UCPA). Some of these developments
are refinements and experience of earlier methodology. The review identifies SLOC as the basic effort estimation
method and Function Point Analysis (FPA) as the technology and platform independence and it’s available
from early requirement phase. In the function point analysis users can readily understand about their software
and its applications, from the customers and not the technician’s perspective. Tn use case point had a
development with the object oriented method and is a software sizing and estimation based on use case counts
called use case points. Other new developments mclude, bottom up approach, top down approach, algorithmic
method, putnam’s model, graphical user interface metrics, cocomo and object metrics to assist the effort
estimation in selecting the appropriate model for a specific case. Each of these developments is discussed in

detail.

Key words: Scurce line of code, function point, use case point, software effort

INTRODUCTION

Source line of code: At the early stage SLOC was an
effort measuring tool for fimetion and assembly language
because these languages are line oriented languages and
developers used punch card data entry system.

Source Line of Code is used to measure the amount
of code in a software program and is used to estimate the
amount of effort that will be required to develop a
program. It is also used to estimate the productivity and
effort once the software 15 produced. SLOC measurement
categorizes into two types, one 1s physical SLOC and the
other is logical SLOC. Physical SLOC is a count of lines in
the text of the program’s source code including command
lines. In this, blank line is also counted and more than
25% 1s not included. Logical SLOC 15 used to measure the
number of statements and it is specific to computer
languages. The larger value of SLOC needs more effort to
develop a program (Albrecbt and Gaffney, 1983).

FUNCTION POINT ANALYSIS

Function Pomt Analysis (FPA) 15 a method to break
systems into smaller components, so they can be better
understood and analyzed. Tt is used to produce an
estimate of software size from software measurement,

comparison and analysis and also to find software size for
input into software cost estimation models and tools that
output effort (staff hours) which is based on empirical
cost estumation relationships between function pomts and
efforts (David longstreet).

The workflow diagram for function pomt analysis is
given in Fig. 1.

Find UFP Find VAF s Find FP
count
Find external Rating system
inputs complexity
Determine
internal output
Rate input
| and output
Determine complexity
internal input
Peterm.ine Rate application
internal complexity
logical files |
Determine EIF —

Fig. 1: Work flow diagram for FPA

Corresponding Author: D. Lakshmanan, Kumaragur College of Technology, Coimbatore, Tamil Naduw, India
1012

Res. J. Applied Sci., 2 (9): 1012-1015, 2007

In function point analysis first function point is
measured for external inputs, output external ingquires,
Internal logical files and external interface files with
weighing factors and value adjustment factor are given for
transactions, data processing, data communications,
conversion and installation based on experience and
procedure given by International Function Point User
Group (TFPUG). Finally fatal function point is calculated
by

FP = UFP x (0.65 +.01 x VAF)
FEATURE POINT

Tt is the extension of function points to include
algorithms as a new class (JTones, 1997). An algorithm
is defined as the set of rules which must be completely
expressed to solve significant computational problems
completely. Each algorithm used is given a weighing
factor from 1 (simple) to 10 ¢highly complex) and function
point is the weighted sum of the algorithms and function
points. Tt is useful with few input/output and to solve
high algorithm complexity problems.

TOP-DOWN AND BOTTOM-UP EXPERT
EFFORT ESTIMATION

The total effort estimate may be based on properties
of the project as a whole and distributed over project
activities (top down), or calculated as the sum of the
project activity estimates (bottom up). Expert estimation
can be described as estimation conducted by persons
recognized as experts where important parts of the
estimation process is based on non explicitly non
recoverable reasoning processes. It includes estimation
strategies 1n the interval from completely un-aided
judgment supported by historical data, process guidelines
and check lists. Tt is more flexible regarding required
estimation input and time spent on producing the
estimate.

When applying top down estimation the total effort
of a software project is estimated with a decomposition of
the project into activities. In this estimation strategy is to
compare the current project as a whole with previously
completed similar projects. The estimated total effort is
then distributed over activities applying for excess
guidelines about the activities constituting typical
proportion of the total effort (Molokken, 2002).

In bottom up estimation the project is typically
divided into activities and effort of each activities are
estimated. The project’s estimate of the total effort is
the sum of the expert estimates of each project
activity possibly with the addition of the effort budget
to cover unexpected activities and events (Connolly and
Dean, 1997).

ESTIMATION BY ANALOGY

Tt is the simplified process of finding one or more
projects that are similar to the one to be estimated and
then deriving the estimate from the values of these
projects. If the selected projects have an unusual high or
low productivity then we should adjust the estimates
toward productivity values of more average projects. It
will compare the actual costs of previous projects by
analogy. This can be done either at the total project level
or at subsystems. The strength of the method 1s that the
effort estimate 1s based on actual project experience
(Walkerden and Jeffery, 1999).

ALGORITHMIC METHOD

Algorithmic method is a mathematical model and it
involves cost factors

Effort=f(x,, x5,....... x,)

X Xgeen oo x, denote the cost factors such as product,
computer, personnel and project factors in linear models,

Effort =a,+ 2", ax,

Where, a,... .. a, are co-efficients selected from completed
project data

The research of Nelson belongs to this
(Nelson, 1966)

Multiplicative models have the following form

model

Effort = au|_| "X

Walston-Felix used tlus model, taking three possible
values -1, 0 and +1. In power function model

Effort=a x g*

Where s = size of the code

a, b are functions of cost factors.
CONSTRUCTIVE COST MODEL COCOMO

The COCOMO research team at the Centre for
Software Engineering at Umiversity of Southemn California,
Boehm (1981) formed this model and the code size 1s given
in SLOC and effort in person moenth. In basic COCOMO
model there are three sets of factors a and b depending on
the complexity of the software.

Effort=a x g*

1013

Res. J. Applied Sci., 2 (9): 1012-1015, 2007

¢+ Forsimple problems, a=2.4, b =1.05
» Forcomplex problems, a=3,b=1.15
s Forembedded softwares, a=3.6, b=1.2

In intermediate COCOMO nominal effort estimation
15 determined with three sets of a, b with a slightly
different from basic model.

¢+ Forsimple problems,a=32b=1.05
* Forcomplex problems, a=3b=1.15
s Forembedded softwares,a=28b=1.2

In cocomo IT the exponent changes according to the
cost factor. It is based on 5 scale factor namely pre
sedateness, development flexibility, risk resolution, team
cohesion and process maturity. It 1s a non linear re usable
formula breakage rating which is used to address
requiremnent volatility and auto calibration facilities
(Putnham, 1978).

PUTNAM’S MODEL

This model is based on Norten/Rayleigh man power
distribution (Putnam, 1978)) and also 1s called Software
Equation which is as follows

S =E x {effort)1/3 x td
Where;
E = Environment factor
Td = Software Delivery time
Effort is in person year

Putnam formed another relation based on manpower
buildup

Effort =D, * td*

Do = Manpower buildup
SLIM, a software tool based on Putnam’s equation for
effort, 1s used as a model for estimation of effort.

USE CASE POINT ANALYSIS

The use case points method is inspired by the
function points method. It was proposed by Gustav
Karner of Objectory (Now Rational Software) in 1993. Tt is
an object oriented method. In this method, use cases are
used to measure the functionality size of the system to be
developed. For estimation of effort the quantity of
functionality is very important. The use case points
method 15 a software sizing and estimation based on use
case counts called Use Case Points. The use case point is
three step (Smith, 1999) procedure.

Step I: The actors are classification of actors. A single
actor is another system with a defined application
programming interface. Average actor is another system
infecting through a protocol such as TCP/IP and complex
actor may be person interacting through a Graphical User
Interface (GUT) environment. The weighting factor based
on complexity 1s given in Table 1.

The total Unadjusted Actor Weights (UAW) 1s
calculated by counting actors, multiplying each total by
its weighting factor.

Step II: The use cases are classified mto simple, average
or complex based on number of transactions based on the
use case description (Karer, 1993) and number of
scenarios (Vinsen et af., 2004). And it 1s tabulated in
Table 2.

Each type of use cases are multiplied by the
weighing factor and the products are added up to get the
Un-adjusted Use Case Weights (UATICW).

Unadjusted Use Case Pomts = Unadjusted weight
UAW + Unadjusted use case weight.

The productivity factor i.e. the number of hours
necessary to realize one use case point is calculated
based on technical factors.

Step-II: The Environmental Factors 1s EF 1s calculated by
multiplying the value of each factor (F1-F8) by its weight
and adding the products to get the sum of the E Factor
EF=1.4+(-0.03 % E factor) as given in Table 3.

The adjusted use case points
UPC=TUCP = TCF = EF

Table 1: The weighting factor

Actor Weighting factor
Rimple 1
Average 2
Complex 3

Table 2: Un-adjusted use case weights

Use Case No. of transaction Weighing factor
Simple <=3 1
Average 4t07 2
Complex =7 3
Table 3: Environmental factor

Description Weight
F, Familiar with RUP 1.5
F, Application experience 0.5
F; Object oriented experience 1
Fy T.ead anaty st capacity 0.5
F; Motivation 1
Fs Stable requirement 2
F, Patience working -1
F; Ditficult programming language 2

1014

Res. J. Applied Sci., 2 (9): 1012-1015, 2007

Table 4: Technical complexity factor

Factor Description Weight
T, Distributed sy stem 2
T, Response adjectives 2
Ts End user efficiency 1
Ty Cormplex process 1
Ts Recursive case 1
T; Easy to install 0.5
T; Easy to use 0.5
Ts Portage 2
Ty Easy to change 1
T Concurrent 1
Ty Security features 1
Ty Seeses tor find parties 1
T Special training required 1

The TCF 1s multiplied by original productivity factor.
In Table 4 technical complexity factor and its weightage is
given.

CONCLUSION

Today effort estimation in software industry 1s a
complex problem which attracts considerable research
attention. Recently artificial intelligence and case based
reasoning (Finnie and Witting, 1996) used data set from
ASMA (Australian Software Metrics Association). Today
the model can estimate the effort required for software
development with high degree of accuracy. The present
effort of International Software Benchmarking Standards
Group (ISB3G) has established repository of 790 projects
(ISBSG). The effort estimates using different methods
based on the situation and time pound and the accuracy
of estimation of the effort also reduced due to
development enviwomment, lack of complexity
measurement and large number of mter related papers. For
best estimation of efforts, the estimation should improve
their knowledge in project attributes and its relationship.

REFERENCES

Albrecbt, J. and T.E. Gaffney, 1983. Software function,
source lines of codes and development effort
predication a software science validation. IEEE.
Trans. Software Eng., pp: 639-648.

David longstreet-www.softwaremetrices.com.

Tones, C., 1997, Applied Software Measurement. Assuring
Productivity and Quality. McGraw Hill.

Top down and Bottom up Expert estimation of software
development effort Magne
research laboratory, Norway.

Molokken, K., 2002. Expert estimation of web
development effort. Individual biases and group
processes (master thesis) in Department of
Informatics University of Oslo.

Connolly, T. and D. Dean, 1997. Decomposed versus
holistic estimates of effort required for software
writing tasks management science, 43: 1029-1045.

Software effort estimation by analogy and regression

Jorgensen. Simula

towards the man Magne Jorgensen, UIF Indatil Daj
Ejaberg Simula Research Lab, Oslo Umversity.

Walkerden F. and R. Jeffery, 1999. An empirical study of
analogy based software effort estimation Empirical
Software Eng., 4: 135-158.

Nelson, R., 1966. Management handbook for the
estimation of computer programming costs ADA
48750 Systems Development Corp.

Boehm, B.W., 1981. Software Engineering Economics
Englewood Cliffs N.J. Prentice Hall.

Miyazaki, Y. and Mori Cocome, 1985. Evaluation and
tailoring 8th Int. Conf. Software Eng., pp: 292-299.

Putnam, I.H., 1978. A general empirical solution to the
macro software sizing and estimating problems. IEEE.
Trans. Soft Eng., pp: 345-361.

Smuith, T., 1999. The estimation of effort based on use case
rational software white paper, pp: 171-9%.

Karner, G., 1993. Resource Estimation for objectory
projects objective systems SF AB 7.

Vinsen, K., D. Tamieson and G. Callender 2004. Use Case
Estimation. The Devil is m the details the 12th
International requirements Engineering Conference
(RE) Kyoto Iapan, pp: 10-15.

Finne, G.R. and G.E. Wittig 1996. Al tools for software
development effort estimation. Software Engineering
and Education and Practice Conference. IEEE.
Computer Society Press, pp: 346-353.

[SBSG.org/au.

1015

