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Abstract: The second-law analysis of a non-Newtonian fluid flowing through a channel made of two heated
parallel plates 1s investigated. The flow 13 assumed to be steady, laminar and fully-developed. The effect of heat
generation by viscous dissipation is included. Velocity, temperature and entropy generation profiles are
presented. The effects of the flow behaviour index, the Brinkman number and the group parameter on velocity,
temperature and entropy generation number are discussed The results show that velocity profile depends
largely on the flow behaviour index. They are flat near the centreline of the channel for pseudoplastic fluids and
linear for dilatant fluids. Temperature profiles are higher for higher flow behaviour index and Brinkman number.
The entropy generation number mcreases with Brinkman number and the group parameter because of the heat
generated by viscous dissipation effect. For pseudoplastic fluids, the irreversibility is dominated by heat
transfer, whereas, for dilatant fluds, wreversibility due to fluid friction 1s more dominant.

Key words: Channel, entropy generation, laminar flow, non-newtoman, parallel plates, viscous dissipation

INTRODUCTION

Fluid flow and heat transfer characteristics in falling
liquid films along inclined plates at different boundary
conditions 1s one of the fundamental researches in
engineering. Studies of simpler systems are useful to
understand some i1mportant features of complex
combinations forming processes in many fields of science
and technology. These basic geometries are common in
many engineering applications as sole units or as a global
entity.

Entropy generation is closely associated with
thermodynamic wreversibility, which is encountered in all
heat transfer processes. Different sources are responsible
for the generation of entropy such as heat transfer across
finite temperature gradient, characteristic of convective
heat transfer, viscous effect etc. Bejan (1982, 1996)
focused on the different reasons behind entropy
generation in applied thermal engineering. Bejan (1979)
presented a simplified analytical expression for entropy
generation rate in a circular duct with imposed heat flux at
the wall. This analysis is then extended by calculating the
optimum Reynolds number as function of the Prandtl
nmumber and the duty parameter. Sahin (1998) introduced
the second-law analysis to a viscous fluid m a circular
duct with isothermal boundary conditions. In another

study, Sahin (1999) presented the effect of variable
viscosity on the entropy generation rate for a heated
circular duct. A comparative study of the entropy
generation rate inside duct of different shapes (circular,
triangular, square etc.) and the determination of the
optimum duct shape subjected to isothermal boundary
condition for laminar flow were carried out by Sahin
(1998). Narusawa (2001) gave an analytical and numerical
analysis of the second-law for flow and heat transfer
inside a rectangular duct. In a more recent study, Mahmud
and Fraser (2003) applied the second-law analysis to
fundamental convective heat transfer problems. They
analysed the second-law characteristics of heat transfer
and fluid flow due to forced convection of steady-laminar
flow of mcompressible fluid inside a chammel with circular
cross-section and channel made of two parallel plates.
Different problems are discussed with their entropy
generation profiles and heat transfer irreversibility
characteristics. In each case, analytical expression for
entropy generation number and Bejan number are derived
in dimensionless form using velocity and temperature
profiles. In another study, Mahmud and Fraser (2002)
investigated analytically the first and second law
characteristics of fluid flow and heat transfer inside a
channel having two parallel plates with finite gap between
them. Fully developed forced convection is considered.
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Fluid is assumed non-Newtonian and followed the power
law model. Analytical expressions for dimensionless
entropy generation number, ureversibility distribution
ratio and Bejan number are determined as a function of
dimensionless distance, Peclet number, Eckert number,
Prandt] mumber, dimensionless temperature difference and
flud behaviour mdex. Spatial distribution of entropy
generation number, irreversibility ratio and Bejan number
are presented graphically. The same authors (Mahmud
and Frager, 2002) reported, in terms of local and average
entropy generation, the mnherent irreversibility of flud
flow and heat transfer for non-Newtonian fluids in a pipe
and a channel made of two parallel plates. They assumed
the flow to be fully developed with a uniform heat flux
at the duct wall. They applied the first and the second
laws of thermodynamics to develop expressions for
dimensionless entropy generation number, irreversibility
ratio and Bejan number as function of geometric, fluid and
flow parameters.

However, in these analyses concermng non-
Newtonian fluids, the influence of viscous dissipation is
omitted. The present study aims at analysing the
mechamsm of entropy generation in a non-Newtoman
channel flow taking care of the presence of viscous
dissipation effect.

GOVERNING EQUATIONS
The  physical configuration is  illustrated
schematically in Fig. 1. A non-Newtonian fluid flows
thought a channel of height 2. made with two parallel
plates. The fluid 1s considered laminar and fully
developed. The non-Newtomian fluid considered in this

study 18 the power-law model (Ostwald-de Waele fluid).
Such fluids are characterized by the following rheological

law:
T= K[

Where n 1s the flow behaviour index and k 1s the
consistency of the fluid. A fluid is pseudoplastic fluid
when n<1; a Newtoman fluid when n = land a dilatant
fluid when n<1.

Neglecting the inertia terms in the momentum
equation compared with the body force term, the
momentum equation reduces to the following form:

)

The associated boundary conditions are:
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Fig. 1: Schematic diagram of the problem
No-slip condition ~ u(-L)=0 (3a)
Symmetry at the centreline o) _ 0o (3b)

The velocity distribution is obtained by integrating
Eq. 2 and using the boundary conditions given by
Eq. 3. Tt may be written:

4

Where u,, 15 the velocity at the centreline of the

channel:
[ Jnﬂ (5)

The governing energy equation is:
aT ?
(x.y) _ a@ T(X,Y)Jr K
ox ay* pChp
Subject to the following boundary conditions:

duly)
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Inlet condition T{0,y)="T, (6a)
dT (x,-L
Wall heat flux 07 _ q (6b)
ay
aT(x,0

Symmetry at the centreline (;; ) =0 (6¢)
The equation of energy can be transformed into a
dimensionless form by mtroducing the following

dimensionless variables:
x=2_y-Y 7

u,L L
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The transformation yields:
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The transformed boundary conditions are:

®(0,Y)=0 (10a)

X (10b)
oY

W(X0) (10¢)

aYy

To get a solution of Eq. 9, a separation of variables
solution is assumed in the following form (Arpaci and
Larsen, 1984):

B(X.Y)=8 (X)8,(Y)+ e (x)+e,(Yy) A1)

The first term in the right-hand side of Eq. 11 is
signmficant for decaying mitial transition and entrance
effect, the second term 1s sigrificant for axial temperature
rise due to accumulated wall heat flux and the third term is
significant for transverse temperature variation to wall
heat flux into fluid. Neglecting entrance effect and
assuming that the system already passed the decaymng
initial transition. Then the first term at the right-hand
side of Eq. 11 will disappear (Mahmud and Fraser,
2002, 2003). Combination of Eq. 9 and 11 leaves two
separated ordinary equations commected by a scalar
constant ¢:

00,(x)
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Integrating Eq. 12 and 13 and applying boundary
conditions described in Eq. 10, the expression for the

(12)
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dimensionless temperature 13 obtained in the followmg
form:
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To obtamn the constant of integration C, the mean
bulk temperature 1s used:

1
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Since Eq. 10a requires @(0) = 0, the constant of
integration is:

oo, no
6 (20+1)(3n+1)(4n+1)
. n
(2n+1)(3n+1)(4n+1)

ENTROPY GENERATION RATE

The entropy generation rate according to Mahmud
and Fraser (2002) is:

)
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The entropy generation number may be defined as:
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Using the defimitions of dimensionless velocity and
temperature, the following expression is obtained for the
entropy generation number:
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aa{x, Y)Y (ee(x Y)Y
e ()
¢ (19)
Br 8UY 1+l
+a[ G(Y )j =N+ Ny +N;

In the above equation, P, is the Peclet number, which
determines the relative importance between convection
and diffusion B, 1s the Brinkman number, which
determines the relative importance between dissipation
effects and fluid conduction. Q is the dimensionless
temperature difference.

On the right-hand side of Eg. 25, the fust term
represents the entropy generation by heat transfer due to
axial conduction, the second term accounts for entropy
generation due to the transverse direction and the third 1s
the part of the entropy generation due to the fluid friction.

RESULTS AND DISCUSSION

Dimensionless axial velocity profiles are plotted as
function of dimensionless transverse distance in Fig. 2 for
five different values of the flow behaviour index. For
pseudoplastic fluids (n < 1), velocity profiles remain flat
near the centreline of the channel and this flatness
decreases with the increase of the low behaviour index.
For Newtonian fluids { n = 1), the dimensionless axial
velocity shows the usual parabolic shape. For dilatant
fluids (n > 1), velocity profiles approach a linear shape as
the flow behaviour index increases.

Dimensionless temperature profiles are plotted in
Fig. 3 for the same range of the flow behaviour index. For
present boundary condition, temperature 1s maximum at
the wall where a heat flux is imposed and minimum at
centreline of the channel whatever the value of the flow
behaviour index is. For a particular transverse distance,
the temperature 1s higher for a higher flow behaviour
index. This means that dilatant fluids heat more easily
than pseudoplastic fluids.

The axial variations of the dimensionless temperature
profiles are plotted in Fig. 4 and 5 for pseudoplastic fluids
(n=10.2) and dilatant fluids { n = 5.0). In all cases, the
temperature increases in the axial direction because of the
contimious heating of the wall.

The effect of the Brinkman number on the
temperature is illustrated in Fig. 6 and 7 for pseudoplastic
fluids ( n = 0.2) and for dilatant fluids ( n = 5.0). The
temperature increases as the Brinkman number increases
either for pseudoplastic fluids or dilatant fluids. As

the Brinkman number which determines the relative
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Fig. 2: Dimensionless velocity distribution
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Fig. 3: Dimensionless temperature distribution

importance between viscous dissipation effects and fluid
conduction increases, more heat 1s generated by viscous
dissipation effect in the fluid. This generated heat by
viscous dissipation effect results in higher temperature
profiles.

In Fig. 8 and 9, the entropy generation number 1s
plotted as function of the dimensionless transverse
distance for different values of the Brinkman number for
pseudoplastic fluids ( n = 0.2) and dilatant fluids ( n = 5.0).
In all cases, no entropy 1s generated at the centerline of
the channel where both velocity and temperature are
maximum (or minimum) which cause zero velocity and
temperature gradients leaving no contribution to the
entropy generation number (second and third term of
Eq. 24.
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Fig. 4: Axual vanations of dimensionless temperature for
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Fig. 5. Axual vanations of dimensionless temperature for
n=>50

For a particular transverse distance, the magnitude of
the entropy generation mumber 15 higher for higher
Brinkman because of the heat generated by viscous
dissipation effect. C In the case of pseudoplastic fluids
(n = 0.2), the entropy generation number decreases along
the transverse distance to reach zero at the centreline of
the channel. This can be explained by the fact, that for
pseudoplastic fluids, where the velocity profile is flat near
the centreline of the channel leaving no contribution of
fluid fricton on entropy generation. Therefore, the
ureversibility 1s mamly dominated by heat transfer. For
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Fig. 6: Axial variations of dunensionless temperature for
n = 0.2 at different Brinkman number

8X,Y)

0.6 02 0.0

Fig. 7. Axial variations of dunensionless temperature for
n = 5.0 at different Brinkman number

dilatant fluids ( n = 5.0), for a particular transverse

distance, the entropy generation number shows maximum

near the wall as the

Brinkman number increases.
According to Fig. 2, the velocity profile is nearly linear
(high velocity gradient), this means that the contribution
of fluid friction on entropy generation number augments.
Thus, for dilatant fluids, the irreversibility is dominated by
fluid friction.

Figure 10 and 11 show the distribution of the entropy
generation number as function of the transverse distance
at different values of group parameter ranging 0.2-1. No
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Fig. 9: Entropy generation number at different Brinkman
number forn= 5.0

entropy generates at the centreline of the channel where
both velocity and temperature are meaximum (or minimum)
which cause zero velocity and temperature gradients
leaving no contribution to the entropy generation number
(second and third term of Eq. (24)) for all values of group
parameter. For a particular transverse distance, the
entropy generation number is higher for higher group
parameter. For pseudoplastic fluids (n = 0.2), the
entropy generation number decreases with the transverse
distance and do not show maxima except for the case
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Fig. 10: Entropy generation number at different group
parameter forn 0.2
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Fig. 11: Entropy generation number at different group
parameter forn = 5.0
where (BrQd' = 0.2), this means that the irreversibility
15 dommated by heat transfer and the wall acts as a
strong concentrator of ireversibility. For dilatant fluids
(n = 0.5), the contribution of fluid friction on entropy
generation dominant, the entropy
generation show maxima near the wall.
Comparing the magnitude of entropy generation number
for pseudoplastic and dilatant fluids, the results show
that irreversibility is more pronounced for pseudoplastic

fluids.

number 18

number
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CONCLUSION

The second-law analysis 1s applied to a laminar non-
Newtonian liquid film flowing through a channel. The
heat generation by viscous dissipation is included in
the analysis. Analytical expressions for velocity and
temperature within the film are provided as function of the
flow behaviour index and the Brinkman number. The
effects of the flow behaviour index, the Brinkman number
and the group parameter on entropy generation munber
are discussed. From the results the following conclusions
could be drawn:

*  Velocity profile depends largely on the flow
behaviour index. They are flat near the centreline of
the channel for pseudoplastic fluids and linear for
dilatant fluids.

*  Temperature profiles shift to higher temperatures with
an increasing flow behaviour index.

¢ Either for pseudoplastic fluids or dilatant fluids,

temperature profiles increase with the axial
distance because of the continuous heating of the
wall.

¢ As the Brinkman number increases, the temperature
profile increases because of the heat generated by
viscous dissipation effect.

* The entropy generation number increases with the
Brinkman number and the group parameter. This is
due to the heat generated by viscous dissipation
effect.

* For pseudoplastic fluids, the ureversibility 1s
dominated by heat transfer, whereas, for dilatant
fluds, irreversibility due to flud friction 1s more
dominant.

Nevertheless, it is necessary to carry out further
analyses and calculations for different geometries and
non-Newtoman fluids other than those obeymg the
power-law model.

Nomenclature:

@ Thermal diffusivity, =A/pCp .................... m"8"
A CArea... .. ...

B, PBrinkman number, =Ku’'m/ AT

Cp  Specificheat. .. e U T g K
K Consnstencyoftheﬂmd e Pas®
L. Halfw1dthofthechanne1....... P 11
n  Flow behaviour index

N dimensionless  entropy  generation — number

conduction, =Pe*(90/3X)’

N; Dimensionless entropy generation number, friction,
= BrQ QUL Y ;"
Ny Dimensionless entropy generation number, total, =

(00/3Y)")
Ny Dimensionless  entropy  generation  mumber,
transverse, =Pa
P. Pressure.. i Pa
P. Peclet number fumL/a
q allheatflux............................. W.m"*
S, Tropygenerationrate............................ W.m K"
T Temperature.....................cco oo K
u  Axial Velocr[y e .ms
U  Dimensionless axml velomty U/U
¥ Axial distance.. R 11}
X Dimensionless ax1a1 dlstance 7ax/umL2
vy Transverse distance......................m
Y Dimensionless transverse dlstance =y/L
Greek symbols
o  Scalar constant
AT Reference temperature difference, =qL/A
© Dimensionless temperature, =(T -T¥AT
Athermal conductivity ......................... W.m" K"
£ Dimensionless temperature difference, =AT/T,
p  Densityofthefluid................................... . kgm"~
TShear stress............ooo oo Pa
Subscripts
b Bulk value

m Maximum value
0 Reference value
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