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Abstract: In this study, a two-step zero stable hybrid Numerov type method 1s developed for direct solution

of general ordinary differential equations of the form

d? d
a,(n 3 +a D2 ray=R(®

The method based on predictor-corrector approach, is consistent and zero-stable. Efforts are made to develop
a predictor having the same order as that of the corrector, thereby reducing the consequential effects of the
predictor on the accuracy of the method. The accuracy of the method 1s tested with linear and non-linear

problems.
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INTRODUCTION

Methods of solving ordinary differential equations
(odes) of higher order of the type

v =ty vy Ly, 1)
yoit)=y¥.5=012.,n-1

have been considered by various mathematicians, both

theoretically and numerically. Most of the methods for

Eq. 1 are essentially to reduce it to system of first order

equations of the form

v =f(Ly) yit,)=y,. feCla bly.teR" ()

an approach, according to Awoyemi and Kayode (2002)
considered to be uneconomical as a result of
computational burden, human and computer time wastage.
However, there are numerical methods developed to
handle Eq. 1 directly. Awoyemi (1995, 1996) considered
the solution of (1) using canonical polynomial and
perturbation terms which would be determined according
as the type of problem to be solved. The use of canonical
polynomial is restricted to the type of order of the
differential equation under consideration and the
introduction of perturbation terms also makes the research
more tedious.

In thus research, a power series of order 2 (k+1), where
k 1s an integer, 1s used as a basis function without any
perturbation terms, in order to eliminate the problem-
dependent nature of the canonical polynomial and the
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associated problems of perturbation terms. The method
yields a two-step continuous hybrid algorithm for a direct
solution of the second order imitial value problems.

MATERIALS AND METHODS

In this research, the approximate solution of problem
(1), with m = 2, 13 taking to be a partial sum of a Power
series with single varable x m the form

2(k-1)

y(x) = Z ax’ (3)

a, 1s real, y is m-times differentiable in the given interval
I =[a, b].

Differentiating Eq. 3 twice to the first and second
derivatives, respectively as

2k-1)

V)= > jax” (4)
1=1
2k-1)
Y=Y i-Dax ®)
=2
From (1) and (5), we have
26k-1) _
Y G- Dax T = £y, Y0, y= ) (O
1=2
Equation 3 and 6 are interpolated and
collocated at the points x.;, 1 = 0, 1, 2,.., k1 and
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X,.,.1=0,12... 15, respectively to have a system of
equations

26k-1)

Z ajxilﬂ = Yo 17 0’ 1’ 2’ T k-1

i=0

26k-1)

Z G-Daxi=f,.i=012..k

(7

z(k 1

Z J(J - l)aJXn+1 = n+v= re (19 2)

z(k 1

Z G-Daxi=f_ . sek-1Lk
Where f,, i YorioY ooy ) 18 the mumerical
approximation to y(x,.;) at x,,;,, and x,,; = x,+ih, h is the
stepsize.

Solving the Eq. 7 for the values of a’s, j= 0,1,... and
substituting these values in Eq. 3 produces the

continuous hybrid method

ye(x)= Z 0 (X, T Z B, (L,

(8)
+T00f, +1 (X)fn+s
By using the transformations m Kayode (2004)
1 a 1
t= XXy )=t el ®)

and taking the stepnumber k to be 2 m the continuous
method (8), the coefficients Uiy BJ,T,I, T, are obtained as

functions of t to be

o, (t) =1+t
Oy ()=t
h2
B, = {33+ 3r—5ts — )t + 10(1—r—3

120(2—-1)(2—8)
+r)t +S5(rs— 25— 2r— Dt + 3(3—r—s)t’ + 2t°}

2
B, = hi{(ISrJrlsz 2515 — 14)t —30(1—1
60(s —1X1-1)
—s+ It 10(2—r—s)t’ —5(d+r+s—rs)itt -
(r+s—2t° + 2%
h2
B, = f(4—Tr—Ts+15ms)t + 10(s — 13+ T— I)t* +
120rs
Srs =5t +3(1-r— 9’ + 2t
2
T, = h {(Ts— Dt +1001—s)t" +
60r(2-rl-r(s—1)

25t* + 3(s — Int” — 2t°}
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h? 3 4
T, = 6052 s )1 {(Tr—MHt +10{1—1)t" + 25t (10)
+3 -1’ - 2t%}

The first derivatives of s BJ, > T, in(10) yield

.1
(& :H
.1
Oﬂl 7*H
. h
B=———— {3+ 3r-5-2)+30(1-1—-s+
120(2-1)(2—-8)
st + 20(rs — 25 — 2r— Dt + 153 —r—s)t* +12t°2
B 8185 25ms—14)— 600115
60(s —1X1-1)
+ 18X+ 3002 —1 )t — 20(4 + r+ 5 —rs)t” — 15(r +
s— 20t +126°%
i 7%{(4 Tr—73+15r8)+30(s — 3+ r—)t* + 20
(rs— 5" +15(1—r—sit* +126°¢
h
T = {(7s — 1)+ 30(1-s)t* + 100t
60r(Z—1)1-r1)s—1)
+15G-Dt* —12t°}
h2

= {(Ir=H+300-0t" +

60s(2—s)s—1¥s—1) (11)

100t° +15(r—Dt* —12t°}

An mfimite number of discrete schemes could be
obtained from (8) by taking different values of t in the
interval T= (0, 1]. In this study , a sample discrete scheme
1s considered from the continuous method (8) takent=1,

which from (9) implies that x = x,.,, and this gives
J 12)

+R,f

1 n+l

1n+2+Q1 n+s
+8f,,. +Tf,

1"n+r

h?
yn+2 - 2Yn+1 + Yn = (

Where
D, =60rs(1-1)(1-8)2-1)(2-s)r—s)
P =rs(1-1)(1—s)r — )7+ 5rs —10r — 10s)
Q=26r(l-r)}2-1)
R, =—18(2 - 1)(2—8)(r —s)(50r + 508 — 50rs — 76)
S, =—26s(1-s8)2—-3)

={1-1)1-s¥2—1)2—s)r—s)(5rs—13)
and from (11)

P1 fn+2 + Ql n+s + lil f

n+l

h
Vbt —

D +S1f +T1f

n+r

|
Yarz = H(Ynﬂ (1 3)
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Where
Di =120rs(1— 1)1 s)H2 — 1)(2 )T —s)

Pr=rs{1—r){(1—s)(r—s)65—82r—82s + 4513)

Q, = 2r(1- 12— 1)(99 — 81)

Ri=-2rs(2— )2 —s)¥r —s)73r+ 73s — 65rs — 172)
S, = ~28(1— )2 — $)(99 — 81)

T, = (1— 1)1 —$)(2 —1)(2—$)(r — $)(8r + 8s + 515 — 99)
THE PREDICTORS

A serious disadvantage of the predictor-corrector
method 1s the problem of having the order of the predictor
lower than that of the corrector, which eventually lowers
the accuracy of the main method (the corrector). However,
m this study an attempt has been made to obtain a
predictor that has the same order of accuracy with the
main method with a lower error constant and a wider
interval of absolute stability than the corrector. The
explicit predictor for the method is derived using the same
power series (3) as an approximate solution of problem (1).
Collocation is done at points

X X

32 n4lr
2z

X

2z

and x, while interpolation is done at points x,,, x, and
taking t = 1, after necessary simplification, yields

+R.f

27n+1

+8.f

27n+r

h2
A A T +T,f) (14)
2

Where
D, =60rs(1-r)1-s)T-5)
Q, =r(1-1)(20-10r)
R, =13(r—s)(90 - 70r — 70s — 60r3)
8, =—10s(1-8)2-s)
T, =10(1- )1 -s)r—s)r+5—-2)

and from (11)

f,

n+1

. 1 h (- - - -
Yosz :E(yn+17yn)+f_[Q2fn+s+R2 fo + 52 JrTzfn]

D;

(15)
Where

D2 = 120rs(1 - 11— $)(2 — 132 — s )T — 8)
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Q, = r(l- )82 - 451)
R =1s(r—5)(237 — 1557 — 1558 + 110rs)
S, =—s(1-5)(82— 45s)

T=(1- )1 s)r —s)}45r + 455 — 20rs — 82)
TEST SAMPLE

To be able to test the accuracy of the derived
schemes, the values of r and s in (12), (13), are taking as
1/2 and 3/2, respectively. The following symmetric
discrete schemes are obtained

z

yn+2 = 2n+1 - yn 71}1@(37fn+2 B 208f 3 + 162fn+1

n+=
2

(16)
~208f | +37L)

1+—
2

The order of (14) is P = 4 and the error constant
Cpy = 1/72. The mterval of absolute stability h = (0,
8.182)The first derivative of (16) from (13) is

~1520f , +1794f
n+5

1 h
T —y )= —(261f
Yors h(yM Vo) 360( e

~1392f | +317f)
2
(7
The order 1s also found tobe P = 4 and C,, = 1/18.
The predictors for y,., and ¥’ ,, for the evaluation of
f.; in (16) and (17) are, respectively obtained from (14)
and (15) to be

2z

h
yn+2 :2n+1_yxa+?(f 3+f +f (18)
o2

n+l 1)
n+—
2

of order P =4, C,,; = 0.00104167 and the interval of
absolute stability h = (-12, 0).
The first derivative of (16) is obtained to be

-57f .+

' 1 h
yn+2 = H(ynﬂ - Yn)+ %(119{14. ol

3

(19)
87f |, —14f,)

n+—
2

of order is P = 4 and error constant C,,., = 0.0102431.

Tt is interesting to note that while the coefficient of f,
in(14) is zero, its coefficient does not vanish (15). This is
due to its coefficient in the continuous method when the
value oft =1.



Table 1: Results and errors for problem 1
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ERRold

ERRnew

0.28068825D-04
0.35815041D-04
0.44218834D-04
0.53450135D-04
0.63654802D-04
0.69164197D-04

0.13450984D-04
0.16684658D-04
0.20399948D-04
0.24673034D-04
0.29579629D-04
0.32294081D-04

X YEX YC

1.1 0.31934375D+01 0.31934240D+01
1.3 0.63519902D+01 0.63519735D+01
1.5 0.10875132D+02 0.10875111D+02
1.7 0.17011061D+02 0.17011037D+02
1.9 0.25014396D+02 0.25014366D+02
2.0 0.29797471D+02 0.29797439D+02
Table 2: Results and errors for problem 2

X YEX YC

2.1 0.52128820D+01 0.52128818D+01
2.5 0.61343820D+01 0.61343818D+01
2.9 0.72158820D+01 0.72158818D+01
33 0.84573820D+01 0.84573818D+01
37 0.98588820D+01 0.98588818D+01
4.0 0.11015007D+02 0.11015007D+02

ERRold

0.80873408D-06
0.80873236D-06
0.80873109D-06
0.80873015D-06
0.80872945D-06
0.80872903D-06

ERRnew

0.24305521D-06
0.24305527D-06
0.24305529D-06
0.24305534D-06
0.24305546D-06
0.24305554D-06

Note: YEX =Y Exact, YC =Y Continuous, ERRold = Error in the old method, ERRnew = Error in the new method

The starting values for the evaluation of

yn+3>Yn+1 and y
2

f+—
2

are adopted from Awoyemi (1996).
NUMERICAL EXPERIMENT

The following test problems are solved with the
method (16)

3
(1) 2L Y ox yy=2, vil)=10
y . y y

x x -1

Theoretical solution:

yix)=3x" - 2x + x*(1+ xInx)

(2) ynfﬂ,gzo, y(2)=35, yi(2)=2
X X

Theoretical solution:

XZ

Y(X):7+3

The computed results of problems 1 and 2 are shown
in Table 1 and 2. The results of the problems solved with
the new method (16) are compared with that of Awoyemi
(1996, 1997).
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CONCLUSION

Attempts have been made in this study to present a
simpler approach at generating a two-step numerical
method for direct solution of general second order
differential equations by using power series as a basis
function instead of canonical polynomials in Awoyemi
(1996, 1997) which is more complicated and restrictive in
application. The accuracy of the derived method is tested
with two problems (linear and non-linear) and the results
were compared with Awoyemi (1996) of the same order
four as shown in Table 1 and 2. The new method shows
a better performance.
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