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Abstract: Since several years, communication networks have known a surprising growth. The increased number
of users, the consequent ncrease of traffic and the request for new services mvolve the development of new
technologies and the deployment of lugh throughput networks. Networking technology has correspondingly
grown to meet the diverse needs of applications and network administration. In response to the complexity of
commumcation networks, simulation was and remains the only way to evaluate network performance.
Unfortunately, traditional simulation methods are not adapted to all networks such as networks with quality
of service and networks with dynamic aspect. To overcome thus limitation, a new method to simulate dynamic
networks based on multi-agents simulation and behavioral approach had been proposed. In this study, we
present an adaptive approach to schedule real-time network traffic using the agent based simulation concept.
The study introduces an Adaptive Real-Time Agent Scheduler (ARTAS) architecture and agent model as basis

for scheduling real-time packet networks.
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INTRODUCTION
There has been considerable recent mterest in
agent-based systems (Abeck ef al., 1998, Dipippo and
Wolfe, 2001; Drogoul ef al., 2002; Gelenbe et al., 2001,
Uhrmacher and Guglor, 2000) systems based on
autonomous software and/or hardware components
(agents) which cooperate within an environment to
perform some task. An agent can be viewed as a self-
contained, concurrently executing thread of control that
encapsulates some state and commumicates with its
environment and possibly other agents via some sort
of message passing (Wooldridge and Tennings, 1995).
Agent-based  systems advantages  when
mdependently developed components must interoperate
i a heterogeneous environment, ¢.g., the Internet and
agent-based systems are mcreasingly bemng applied in a
wide range of areas including telecommunications,
business process modeling, computer games, control of
mobile robots and military sunulations (Bradshaw, 1997).
Agents are emerging as one of the key technologies
which will facilitate the transition to and the
implementation of the Information Society and, as such,
they can have enormous long-term benefits to society.
While agents offer great promise, adoption of this
new technology has been hampered by the limitations of
current development tools and methodologies. Multi-
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agent systems are often extremely complex and it can
bedifficult to formally verify their properties (Jennings
and Wooldridges, 1998). As a result, design and
implementation remains largely experimental and
experimental approaches are likely to remain important for
the foreseeable future. In this context, simulation has a
key role to play m the development of agent-based
systems, allowing the agent designer to learn more about
the behavior of a system or to investigate the implications
of alternative architectures and the agent researcher to
probe the relationships between agent architectures,
environmernts and behavior (Logan and Theodoropoulos,
2001). The use of simulation allows a degree of control
over experimental conditions and facilitates the replication
of results n a way that 1s difficult or impossible with a
prototype or fielded system and it allows the agent
designer or researcher to focus on a particular aspect of
the system, deferring problems that are not central to the
research or that are beyond the capabilities of current AT
technology. Hence, simulation has traditionally played an
important role in agent research and a wide range of test
beds have been developed to support the design and
analysis of agent architectures and systems.

In fact, multi-agent simulation derives from three
strong ideas: To use models centered on entities and their
interactions rather than on relations between measured
values, to comsider that the general dynamicity of the
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system results from interactions between these entities
and to make the assumption that agents are able to
describe the behavior of the entities.

REAL-TIME SYSTEMS

A real-time system 1s typically composed of several
or sequential tasks with timing constraints. In most real
time systems, tasks are invocated repeatedly: Each
invocation of a task is referred as a job; and the
corresponding time of invocation 1s referred as the job’s
release time or job’s deadline (Srimvasan, 2003). Thus,
the relative deadline parameter is used to specify the
timing constraints of the jobs.

A real-time system has two notions of correctness:
Logical and temporal (Srinivasan, 2003). In particular, in
addition to producing correct outputs (logical
correctness), such a system needs to ensure that these
outputs are produced at the correct time (temporal
correctness). However, selecting appropriate methods
for scheduling activities is one of the important
considerations in the design of a real-time system
(Zahang and Ferrari, 1994); such methods are essential to
ensure that all activities are able to meet their tuning
constraints. These timing constraints are usually specified
using a deadline, which corresponds to the time by which
a specific operation must complete.

Real-time systems can be broadly classified as hard
or soft depending on the criticality of deadlines (Tu et al.,
2002). In hard real-time systems, all deadlines must be
met; equivalently, a deadline miss results in an mcorrect
system. On the other hand, in a soft real-time system,
timing constraints are less stringent; occasional deadline
misses do not affect the correctness of the system.

RELATED WORK

To manage and promote disciplined development
of agent-based systems, a comprehensive and detailed
architecture 15 required. For such purpose, the past
decades witnessed several proposed architectures with
particular attention on the following architectures:

Al-based approaches: A variety of agent architectures has
been proposed and employed with the emphasis on
decoupling agents' actions (Brooks, 1986; Ferguson, 1992;
Kaelbling, 1990; Muller and Pischel, 1994). Such designs
can be characterized as deliberative, reactive and hybrid
combinations of the two. The deliberative architecture
promotes local and collective control, decision making
and execution based on declarative knowledge. The class
of reactive arclutectures 1s based on building a hierarchy
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of tasks ranging from primitive to complex, with the former
having precedence over the latter. The remaining class
of architectures 1s known as hybrid with the obvious
interpretation. For example, the architecture proposed in
(Brooks, 1986) is composed of three layers: Reactive,
planning and modeling. The reactive layer is used to
respond to simple needs of agents in the spirit of the
reactive architectures. The other two layers are supposed
to support other needs of an agent representing cognitive
of agents, reasoning
communicating their decisions to the reactive layer.

state about actions and

Distributed software object-based approaches: The basis
for such architecture is an object model accounting for
abstraction, encapsulation, modularity and herarchy
{Booch, 1994). The object model provided the foundation
to support the fundamental extensibility, scalability,
management and persistence traits for software
architecture. The Umfied Modeling Language (UML)
provides a set of modeling concepts and constructs. With
UMI, diagrams, one can capture various static and
dynamic aspects of a system.

Layered architecture: This architecture consists of seven
layers, networl (the lowest layer), middleware, simulation,
modeling, search, decision and collaboration, where the
lower layers provide services for the upper layers. Higher
layers can use and possibly subsume the roles of the
lower layers. Each layer is considered in isolation and in
relation to others (Sarjoughian et al., 2001).

MULTI-AGENT SIMULATION PROCESS

In a discrete event simulation the time and nature of
future events 1s computed 1n a predetermined fashion from
the list of past events which have occurred. Thus the
designer of a simulation will typically pre-specify all
possible transitions and will not leave the definition of
state transitions to entities which are not fully pre-
determined. Thus it would be very useful to mtroduce
agents in a simulation whose behavior is determined by
specific circumstances and through adaptive behavior.
The alternative we propose 1s that, m addition to the usual
attributes of a discrete event simulation (such as event
lists and possibly random number generator driven
events), a simulation should contain a certain number of
agents. These agents store mformation during a
simulation and use 1t to modify their behavior during that
same simulation or during distinct simulation runs.

From the point of view of agent-based simulation,
we break up our simulation mto 3 stages as shown in
Fig. 1.
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Fig. 1: Agent-based simulation stages

Reality

Simulation

First stage: Includes the decomposition of the real
phenomenon into a set of autonomous elements that
interacts between each other and whose interactions
reproduce the real phenomenon.

Second stage: Includes modeling each element by an
agent and definition of its knowledge, its functional
capacities, its behaviors and its interaction modes with
other agents.

Third stage: Includes the description of possible actions
between agents, by defining the environment in which
these agents evolve and the rules which control them.

By taking again the three stages described in Fig. 1,
we place ourselves in an agent context. Thus, we follow
the steps of a multi-agents simulation process:

System decomposition: A queuing model is an
mfrastructure that gathers 6 types of elements: server,
scheduler, queue, source, packet and clock. In addition to
the model itself, we have to create a new element (Maimn)

that will be the principle actor of the system behavior.

Modeling each element by an agent: With regard to the
elements of the environment, we consider two types of
elements: static (passive) agents and dynamic (active)
agents. To bring great dynamicity to the system and
preserve computer resources we decide to model server,
scheduler, queue and main as active agents while source,
packet and clock as passive agents.

Description of possible actions between the agents:
There are many possible actions between the agents,
ie., messages exchange between the agents to take
certain action, change thewr policy, or update their

information.
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ARTAS ARCHITECTURE

Our  Adaptive  Real-Time Agent Scheduling
(ARTAS) architecture 1s a three-layered architecture as
depicted in Fig. 2. At the lowest layer, we assume
having a Real-Time Operating System (RTOS). Above
that are the which
consist of the real-time scheduling agent and the real-time
queue agent. At this layer, all tasks are scheduled based
on the implemented algorithm, ie. in our case the
Hierarchical Diff-EDF scheduler. Fially, the real-time
agent services layer extends the scheduling services
resulting in task completion. Moreover, the top layer

real-time middleware services

provides a service for real-time agent commumcations
and interactions.

RT packet agent: Communication among agents in this
architecture 1s performed through a packet request for
service from one agent to the others. Each packet request
has a formal description of <A, I, D >, where A represents
the source to generate this packet request, I 1s the flow
priority to which this packet belongs and D represents the
deadline by which the request packet must be completed.
If the servicing agent cannot complete this request before
its deadline expires then it will be discarded.

RT main agent: As we mentioned earlier, the Main agent
1s the principle actor of the system behavior. Hence, all
packet requests should be sent through this agent. Tt is
the agent to comtrol the entire environment through
commurcations with the other agents in the system. The
Main agent enforces other agents' policies, disciplines
and actions.

RT service agent: Is an active agent which 1s responsible
for packet request completion. It is the Main agent which
tells this agent when to change their service discipline.
The service agent keeps track of the missed packet and
reported them to the Main agent.

RT scheduler agent: Our real-time agent scheduling
algorithm performs schedulability based on the EDF
algorithm. The packet request 1s scheduled depending on
their original flow, i.e., RT or Non-RT flow. The scheduler
agent treats the mcoming packets to achieve the best QoS
flow’s requirements.

RT queue agent: This is an active agent which treats the
incoming packets and place them in the appropriate

defined queue based on their flow characteristics
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Real-Time middleware services

Real-Time operating system

Fig. 2: ARTAS architecture

Fig. 3: Agent model

requested by the Main agent. The queues have limited
size and provided with threshold. The queue agent
monitors the queue threshold and mteracts with the Main
agent to inform the queues' status. It also, has the
authority to control the queues’ filling rate in real-tune and
the number of discarded packets according to their class.

AGENT MODEL

Our RT Agent model allows for the expression and
enforcement of timing constrains on real-time agent
mteractions. The model is based on the assumption that
agents may be able to perform their tasks in variety ways.
It 1s made up of Real-Time Agents (RTAgent) and a set of
commurications among the real-time agents. Figure 3
displays the active elements of the model.

SYSTEM AGENTS IMPLEMENTATION

The system is modeled as agents and their
interactions rather than relations based on calculated

measures. The agents m the system are these entities
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Packet
request

Accept request by
the main agent

Inform the Set delay = 0 for this
agent packet et and report
duene to the main agen
Enqueuse packet based on
Qos space and acknowledegs
the scheduler agent

Fig. 4: Packet request process

capable of describing it own behavior with other entities
within the system and with the environment i.e.,
constraints  specifying dynamicity. The phenomenon
(real system) is modeled by composing the agents shown
in the agent model. For each agent, we identify the
defimtion of its knowledge, its functional capabilities, its
behavior and its mteraction modes with other agents.

Main agent: The main agent is the principle actor of the
system behavior. It momitors the other agents and
provides them with the directions for use. It decides
changes of behavior, treats the messages coming from the
other agents. The mam agent takes decisions, has
learming and high communication level possibilities and
can provide other agents with information at any time
during the simulation. The main agent has several
functional capabilities such as setting the system
environment, managing packets' request and generating
reports. Figure 4 shows the packet request process
handled by the main agent. The process starts when the
Main agent accepts the request. At that time the Main
agent will interact with the scheduler agent to inform a
new request arrival. As a part of the operation, the
scheduler has to communicate with server agent to check
his status. Tf the server agent replies with idle then the
request will immediately served and reported to the Main
agent. Otherwise, if replies with busy, the scheduler agent
has to communicate with the queue agent requesting to
enqueue the packet. The queue agent will execute the
request, based on the packet QoS specifications and the
action will be acknowledged to the scheduler agent.
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Set packet Set packet
discipline to discipline to
FCFS Diff-EDF

Fig. 5: Packet classification process

Scheduler agent: The scheduler agent is the key behind
enforcing expressed timing and QoS constrains. Tt plays
the main role in determining the disciplines of how the
packets are going to be served. For our scheduler agent,
two disciplines, in hierarchical arrangement, have been
defined: The Real-Time (RT) such as EFD used to
schedule multimedia traffic and the None-Real-Tine (NRT)
such as FCFS used to schedule the best effort traffic. The
main tasks this agent has to perform as a part of our model
imnplementation include packet classification, packet
deadline adjustment and monitoring system events such
as arrival and departure. For example, Fig. 5 shows the
packet classification process being handled by the
scheduler agent.

Queue agent: This agent is the system queues' manager.
Tt is responsible for treating the incoming packets, when
the server agent busy, by placing them into the
appropriate defined system queue. To complete such a
task, the queue agent performs an enqueuing operation;
where the EDF queue 1s used for the real-time packets
while the FCFS queue 15 used for the Non real-time
packets. On the other hand, the queue agent performs a
dequeuing operation whenever the server agent requests
an enqueued packet to get ready for service.

Enqueuing operation: To implement such operation, we
use the Linked List data structure. For FCFS queue, we
use ordinary linked list as packet arrangement is based
only on the inter-arrival time of each packet.
Consequently, packets are enqueued with smallest inter-

arrival time at the head of the queue. On the other hand,
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queue

Until: FCFS queue
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}
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Fig. 6: Service process control

the EDF queue is implemented using Sorted Linked Tist,
where sorting 18 based on the min value of packet
deadline and inter-arrival time. The reason to choose this
type of Linked List is to reduce scheduler complexity, so
that rather than the scheduler will spend the time in
picking up the shortest lead time packet to get serve, the
queue 1s ready to be served starting from the queue head.

Dequeuing operation: This operation allows the queue
agent to keep track of all packets leaving the queues to be
served. The implementation of this operation 1s simply
carried out through always picking up the packet on the
head of the requested queue, identified by the server
agent, to be served.  Such implementation shows higher
system utilization.

For the purpose of managing hierarchical scheduling,
our system features a feedback control mechanism that
detects overload conditions and modifies packet priority
assignment accordingly. This feature 18 handled by
the queue agent through keep observing any overload
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conditions at the FCFS queue. The overload condition is
detected whenever the FCFS queue size exceeds its
defined threshold value. If the overload condition is
detected, the queue agent immediately mteracts with the
Main agent to inform the condition. At this pont, the
Main agent changes the server agent policy, to serve the
FCFS queue, until system stability. The key behind
enforcing the threshold is to prevent packet starving
which consequently improves the system performance.

Server agent: As its name indicates, it is the agent to
handle the service process resulting in packet life cycle
completion.

The two man tasks assigned for this agent are:

Controlling service process: As we mentioned earlier, if
queue agent detects overload conditions then the Main
agent has to change the service policy of the server
agent. Hence, the server agent will control the service
process to achieve system stability. To perform this task,
the server agent follows the steps identified in Fig. 6. The
algorithm is based on the idea that the server always
serves the packets in the EDF queue (high priority) and
serves the FCFS queue (low priority) if and only if the
EDF queue is empty or the FCFS queue reaches its
threshold value.

Performing packet service: In this task, the server agent
has to imtially compute the packet queuing time as in the
following formula:

Packet Queueing Time = Simclock Current Time-
Packet Bom Time

After getting this value, a comparison operation is
performed to determine whether the packet can proceed in
its service process or it is considered to miss its QoS
constrains. The comparison operation is defined as mn the
following:

If (PacketQueuemgTime >= PacketQoS) — Missed
Packet Otherwise — Proceed Service process

If this operation returns a missed packet, then the
server agent will check the flow to which this packet
belongs and encounter a miss in that flow. The result will
be transferred to the Main agent for the purpose of
generating the report at the end of simulation. On the
other hand, if the operation results in proceeding the
service then the server agent will set its status to busy,
request the needed service time from the packet agent and
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Fig. 7: Packet service process

start the service process. During each packet service, the
server agent will advance the clock agent with the packet
service time value, mcrease the number of served packets
and compute the server busy time to be used in
calculating the server utilization, by the mam agent, at the
end of the simulation. The whole service process carried
out by the server agent can be shown in Fig. 7.

Source agent: This agent is the system actor of
generating the requested traffic determined by the Main
agent. Tt uses several arrival processes' models and the
distributed random variants to generate the required
traffic. Packet generation steps carried out by the source
agent mcludes determining the exact source which this
packet belongs, determming the Packet type, generating
packet's mter-arrival time and service time, generating
packet deadline and obtaining mitial seeds.

For each packet to be generated there should be an
exact time at which the packet born and an exact time at
which the packet completes. Consequently, the source
agent uses the exponential distribution with a mean of 1/4,
to generate the packet inter-arrival time and 1/y; to
generate the packet service time. For QoS constrains, each
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packet is associated with a deadline that precisely identify
its living period. Tf the packet exceeds its predefined
deadline before being served then it is considered to be
useless. Hence, the source agent has to generate this
value based on the uniform distribution as in the
following formula:

PacketQoS =
QoSMim)

QoSGenerator.umform  (QoSMax,

Another mam task to be handled by the source agent
15 to ensure that all generated packets obtamn an iutial
seeds based on their flow characteristics. This task is

private static void assignSeeds(){
for(int streamID=1;streamI D<=numberOfStreams; streamID++){

seed[0] = 1973272912;

double z=1973272912.0;

for(int i=1;i<=numberOfStreams;i++){
dof
z=Math.IEEEremainder(715.0%2,2147483647.0);
z=Math.IEEEremainder(1058.0%2,2147483647.0);
7=Math.TEEEremainder(1383.0%z,2147483617.0);
twhile(z<0.0);
seed[i] = (long) z;

Fig. 8: Seed imtializer techmque

carried out by implementing seed initializer technique that
initializes different seeds for the variety flows as shown in
Fig. 8.

Packet agent: This is a passive agent since it does not
have any leamning capabilities. Tt only holds the packet
information, received by the source agent and responds
to other agents’ requests with the needed information.
The packet agent identifies the packet QoS constramns and
its type.

Clock agent: This 15 the system actor of recording the
events occurrence. [t uses the Next-Event Time Advanced
approach, shown in Fig. 9, to advance the simulation
clock to the time of occurrence of the system events,
where at this point the state of the system is updated to
account for the fact that an event has occurred. This
process of advancing the simulation clock from one
event time to another is continued until eventually some
pre-specified stopping condition 1s satisfied.

The advantage of using this approach is that periods
of inactivity can be skipped over by jumping the
clock from event time to the next event time. This is
perfectly safe; since by defimtion all state changes
only occur at event times. Therefore, causality i1s
guaranteed. Furthermore, the event-driven approach is
usually exploited in queuing and optimization problems.

Initialization routine Main program Timing routing
“— 1. Invoke the intialization routine 1. Determine the
1. Set simulation 2. Invoke the timing routine [ next event type, i
) clliculia]:zg cystem 3. Invoke event routine i 2. Advance the
ptia L simulation clock
statistical counter 13
3. Initialize event list E routine i Lit ines
1. Update system stste
2. Update statisical counters  |——»| Generate
3. Generate future events 4— random variants
and add to event list
Is simulation No

Report generator

over?

2. Write report

1. Compute estimates of interest

Fig. 9: Flow control for the next-event time-advance approach
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Agents management: For our model management, agent
actions are reported to the mam agent. The main agent
receives these reports as agent events. Possible events
are arrival, departure, migration and termination.
Dependent on the agent, any other events are possible.

We discriminate synchronous events where the
event emitting agent waits for the main agent
acknowledge and asynchronous events where the event
emitting agent continues its work without acknowledge.
Synchronous events will be used for agent control and
monitoring. Asynchronous events represent simple
monitoring information. Events like migration may be
implemented as synclronous events. Control of the
agent’s moves 1s necessary 1f domam admimstrators want
to restrict access to certain agent classes. Hvents like
Termination may be asynchronous since it 1s sufficient to
simply know that this particular agent ceases. Keep in
mind that event classification 1s still a matter of research
and highly application dependent.

The mam agent handles the list of agents. This List
comprises all agents that are currently in its domain. Every
agent 1s listed with its identity, class, current location
and task identifier. The main agent stores the incoming
events and controls, m case of synchronous events,
continuation of execution for every agent in the list. An
event consists of the event type, the source (ie., the
emitting agent) and some event-specific information such
as deadline.

CONCLUSION

During the past decade, there has been considerable
recent interest in agent-based systems and multi-agent
simulation. In this study, we have presented an adaptive
approach to schedule real-time network traffic using the
agent based sunulation concept. During the multi-agent
simulation process, we identified our simulation stages by
decomposing the system into a number of elements,
modeling each element with agent and last describing the
possible actions between these agents. Also, we
introduced our three-layered ARTAS architecture, agent
model, system agents' implementation and management.

As a future research, we suggest to deploy the
ARTAS architecture and agent model, proposed in this
research, in variety real-time schedulers such as EDF and
GPS to experience its efficiency m refimng system’s
design and management.
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