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Abstract: Tn the study, we will give a method of solving the solution for the nonlinear Volterra-Fredholm
mtegral equation in the reproducing kernel space W(D). The problem on solving the selution of the nonliear
Volterra-Fredholm integral equation is transformed into the problem of solving system of linear equations. The
approximate solution converges to exact solution of the nonlinear Volterra-Fredholm integral equation m the
sense of |.|, but also in the sense of |.|.. In addition, the error of the approximate solution is monotone
deceasing and high convergence order O(% +%) mn the sense of || Numerical experiments illustrate the

method is efficient.
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INTRODUCTION

We shall consider the general nonlinear mixed
Volterra-Fredholm integral equation of the form

u(t,x)=f{t,x)+ fut InFitx, & u(t )dedr, 1)
(t.x)e[0.T]xQ

Where ult, x) is determined function f(t, x) and
Ft, %, 1. £ u(t, {)) are analytic functions on D =[0, T] = €2,
where {15 a closed subset of R", n=1, 2, 3.

Equations of this type arise in the theory of nonlinear
parabolic boundary value problems, the mathematical
model of the spatiotemporal development of an epidemic
and various physical, mechanical and biological problems
(Diekman, 1978, Thieme, 1977). The existence and
uniqueness of the solution for the Eq. 1 are discussed in
(Hacia, 1996; Kauthen, 1989). Significant progress has
been made in numerical analysis linear and nonlinear
version of the Eq. 1. For the linear case, some methods
for numerical treatment are given in (Hacia,1 996; Kauthen,
1982; Guoqiang and Liging, 1994). For nonlinear case, the
literature of integral equations contains few numerical
methods (Maleknejad and Hadizadha, 1994) for handling
the Eq. 1. In recent years, there has been renewed interest
m Eq 1, such as the time collocation and time
discretization methods, the particular trapezoidal Nystrom

method (Guoqiang, 1995) the Adomian decomposition
method (Maleknejad and Hadizadeh, 1994; Adomian,
1994; Cherruault, 1992) and so on. The present research is
motivated by the desire to obtain convenient method of
solving the Eq. 1.

In the study, we will give a method of solving the
solution for the Eq. 1 in the reproducing kemel space
W(D).

SEVERAL THE REPRODUCING KERNEL SPACES

In the study, several the reproducing kemel space are
given for solving the solution of the Eq. 1.
*+  Space
1
W, [a,b]
(Ming and Cui, 2004}) 1s defined by

1 u is one-variable absolutely
Wla,b] 2 {u ,
continuous function, u’ € L™ [a, b]}

The inner product and the norm in
1
W,[a,b]

are defined, respectively by
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<u(x), vix) > = f: [u(x)vix) + u' (x)v'(x)]dx,
1
ux)vix)e Wzl[a, bl. ”u”Wl =< u(x), v(x) =2,

W', [a, b) is a complete repreducing kernel space
(Minggen and Zhongxing, 1986) and its reproducing
kernel is given by

R(l)(y) _

« =—[coshix+y-b-a)
Zsinh(b —a)

(2)
+ cosh(|x + y| -b+a)]

Using the defmition of the reproducing kernel, it
holds that

u(x) =< uly), Rg) (y) > ! for all

ue Wzl [a,blandfixed x = [a.b]

Space
Wy [c.d
[c.d]

(Ming and Cui, 2004) 1s defined by

u, u'v” are cne-vanable absolutel
W le,d] £ fu 2y
continuous function, u’,u” € L[¢, d]

and endowed 1t with the inner product and the norm,
respectively,

(V) pl4u(OvV) + 5u'(x)V
<UX), V(X)) > =)o s
’ Wi 00+ w oV () Jdx

1

u(x), vix) e W;[c d]”u”.w22 =<u(x), v(x) w 2

Similarly,
2
W [c.d]

is also a complete reproducing kernel R, (y) space and
the reproducing kernel 1s given m (Minggen and
Zhongxing, 1988).

For the Eqg. 1, u(t, x) is continuous in first partial
derivative on t We considered the space W (D), where
D = [a, b]*[c, d] W (D) 1s defined by

Bult, x)

W(D) = {ult, x)u(t, x),

are two-variable complete continuous fuctions,

Pt x)
TG 1, (D),p = 0,1,2,(]: 0,1}
ot ox
The imner product and norm are defined by,
respectively

<UL U, Py

_ g g
= jD[4u1 (t3u,(t,x)+ 5 > u,(t,%) Pl (t,x)

2 2

a 3] a
+¥u1(t,x)¥uz(t,x)+ 4&u1(t,x)

2 2

5} a 5}
&uz(t,x)“r 5 ﬁul(t,x)@uz (t,X)
& &
+ wul (t,X)wuz (t,X)]dth
and

Jull, =< 00, v > 3)
Lemma 1:

ifult,x) =y (Hu,(x), ueWu e W;, u, € W'Zl
then ufy, = ||“1||W22 ”uznwg

“4)

The reproducing kernel is expressed as (Ming and
Cui, 2004).

R (tx)=RPORE' () (5)

SOLVING THE EQ. (1) IN THE REPRODUCING
KERNEL SPACE

In this study, we will give the methoed of solving the
solution and a representation of the solution of the Eq. 1
1n the reproducing kernel space.

Transformation of the nonlinear integral equation:
We will discuss on solving the Eq. 1 in the reproducing
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kernel space W (D), where D = [0, T]x[a, b]. We find
there exist first partial derivative of function u(t, x).
Apply partial denivative of two sides of (1.1) with
respect tot, we have

du(t,x) _ofit,x) +J.: Fitx.t & u(t,2)

& (6)
di"‘fut ;[1) GF(t,X,'l:é%,u('c, é))déd‘t
with initial values
u(0,x) = £(0,x) (7

Obviously, the Eq. 6 1s equivalent to (1).

The definition of operator 1.: In Eq. 6, the operator

L:W(D) > W,[a, b]

1s defined by
au(t,
(Lu)x)2 (t. %) =0 (8)
Iflett=01n Eq. 6, then we obtain operator equation
(Ludx) = G(x) &)
Where
of(t, b
660200 RRox05u0.8ds (10

Tt is easy to prove the operator L. is bounded linear
operator.

Obviously, the solution of Eq. 6 satisfies the form
(8). But we must point out the Eq. 9 is not equivalent to
Eq. 6. Here, we will solve the solution of (6) in virtue of the
definition of the operator .

Solving the solution of Eq. 6: Tn order to obtain the
representation of the exact solution of Eq. 6, let

1
9@ =Ry ®)
where

Bk

1s dense 1 the mterval. From the defimtion of the
reproducing kernel, we have

661

< v(X), (pi(x) == V(xi ).

Let L" denotes the conjugated operator of L from W
(D) to

Wi[a,b]

Lemma: The bounded operator 1.* from
W;[a,b]

to W (D) is expressed by

R )

R(l) (11)

(L9, )t x) = woRPo =12

Proof: From the definition of $L$ and the properties of the
reproducing kernel

2 1
R M8 = RETRI @)
for any mixed t and x we have

o0 =< 1y REV nm R i e -

—< @R L o kP mrPem-
2
- R P mri @y

_®{Pm)

on Ri(l)}(yi ),

70 =12,

Where the subscript x by operator L, indicates that
the operator L applies to functions of x.

We write
*
W (630 = (L Xt, )
and
B i
w (t.x)= kélﬁikwk(tax)
Where P, are coefficients of Gram-Schmidt

orthonomalization. Then the span for
— o0
{Wi (t, X)}i:1

1s a subspace of W (D)



Res. J. Applied Sci., 2 (6): 659-665, 2007

span( {; (£, %)} = {u(t, x)fu(t, x)
(12)

n
=2 ey (t,x),c. eR,ne N}
i=1 !

Let S be the closure of this subspace

8 = span({T; (t. X)}; ;)

And 5. denote orthcomplement space of S m
W (D). Using the following method, we can obtain an

orthonormal basis

_ 1
{5 (20} of S

Take a set of points
B=ip.m..£. 1"
£
as a dense set of region D = [0, 1]%[a, b] and put
=12 (13)

p,(tx)=RPOR P x),

Where
ROWRY )

is the reproducing kemel of W (D). we begin to proceed
generalized Schimidt orthonormalization for the function
system

— w0
{pi (t’x)}i:1
about orthonormal system
— 0
{Wi (t,x) }iZI
that 1s

6i+l =
p1+1 - Zk=l(pi+l=qjk)¢]k - Zk:l(pi”’ﬁk )ﬁk
Pias = 2 (P W W, = 2, (P PP, e

1=12,-

Where

3-1 s
>, 0as soon as j=landput

_ = U .
pj(t,X) = ;Bjkwk (t.x)+ nglﬁjkpm (t.x), j=12,..., (14)

Since
W (63037,
and

GRS
are orthonormal basis of S and S1, respectively.
W (L0)7 OB (LX)
is an orthonormal basis of W (D).

Lemma: Take a set of points
B={p,n,.&)}5
as a dense set of region D = [0, 1]x[a,b]. Then
{085
given by (13) 1s acomplete system in
Wla,b]

Theorem 1: Take {5 1> as a dense set of interval [a, b].

Assume u(t, x) be the solution of Eq. 6, then the solution
is expressed as

u(t,x) = i kil B.Gls, W, (t.x)+ iocjﬁj tx) (1%
1= = J:
Where G(x) are given functions m (8) and ¢, satisfy
w0,x) 2 £(0,%)= i KilBikG(sk)T;i (0,%) + i o,5,(0,%) 16)
i= = i=

We will obtain the approximate solution by truncating
the series

_al . a 17)
U, R(Lx)= zlkzl By Gls ur (LX) + gl a,;p;(tx)

and o satisfy

u, L (0,x)= 21 kil B, G (s, ). (0.x)+ ilocjﬁj(o,x) (18)
1= = 1=
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Proof: Assume u(t, x) be the solution of Eqg. 6 and
u(t, x) € WD) Letu(t, x) be expanded in Fourier series

u(t,x) = 3 < ult,x ) (£,%) >,
i=1

(t,3)+ ¥ <u(t,x),B,(6,X) =P, (1,%)

i=1
by the orthonormal basis of.

(.60}, U (B (6X))2, of W(D)

Let
o, =< ult,x), p, (£,%) >
we get
w 1 % _ @
u(tx)= 3. % By < u(tx).L g, (1) >y B (Lx)+ T o (x)
iz

0
=
[

B < (L)), () >y B L)+ X 05, ()

Il
8
-

Il
or
-

]
=
I

By, < G, () >4y B (L) + il @, (LX)
2 1=

1

Il
or
-

]
=
I

B, G5, ), (t.x)+ il B, (%)

Specially, it holds that
u(0,%)= T ¥ BG(s, 0.(0.%) + T 05,(0.)
1= = i=

From the uniqueness of the solution and the 1mtial
values (7), ¢; can be obtained by solving infinite system

of linear Eq. 16.
In calculation, from Lemma (3), o; can be obtained by
solving infinite system of linear equations

< f(oax)apl (0.x) >W‘ =X BlkG(Xk) < \Tji(oax)a
2 {o1E=1

p,(0,x) Wi +3 oy <p;(0,x),p, (0,X) W

i=1

From the form (13), we get
F0.6)= T 3 RGO W 0.8)+ T op (0.6 1=1.2.
1= = 1=

Hence «; n the approximate solution u, (t, x) can be
obtained by solving finite system of linear equations

F0.8)= X 3 BLGG, W O.6)+ T ap,(0.6) 112, m,
1= = 1=

Theorem 2: Assume u(t, x) be the solution of Eq. 6
andr,, (t. x) are the error in the approximate solution
U, (t %), where u (t, x), u, , are given by 15-17,
respectively. Then the following conclusions hold.

»  The approximate solution u,, (t, x) converge to the
exact solution n the sense of ||.|W.

» The ermror 1, (t, x) 1s monotone decreasing m the
senise of |.|W.

*  The errorr,, possesses convergence order

(60 = O(% i)

Proof: From the form (15) and orthonormal basis
(W (L)Y, w (P (LX),

of W(D), it follows that

2z

[uct. 0}, =

3 3 PG 0, W (8,%) + z oL, (1.%)

—kk=1

s

= Y[ B,G(s, ) + iaf

i=1 k=1

Note that if ||ufly < =, then there exist constants a and
b such that

TIZBGGsIr =a,  Tof=b
1= = i=
This implies that
ST RG] I
and
o, el j=12,--
Subsequently, it holds that
Zl‘. By Gisy) iia ‘a]‘ga_.z
k=l i ]
Since
§ 1l §loa
1=n+112 n j=m+1 _]2 m

Where ¢, 1=1,2,3,4 are constants. We get
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rn,m(t,x)HfW = Hu(t,x) -u, . (t,X)HZW

=202 B G + X of

ol e (19)
=< E 2""02 E e

1=n+11 ]:m+1J
gc(l+i)

n

Where ¢,,¢, are constants and C = max {c,,c,}. From
the form (17), we get U, olw = [uls, (@ — ).
Suppose that u(t, x) and u,, (t, x) are given by (15) and
(17), respectively. We have

rn’m(t,x)H; = Hu(t,x) - un,m(t,x)H;

= SUSBGE S o

i=n+l k= 1=m+1

(20)

From the form (20), it holds that

1

m

)

(60 = O(%

NUMERICAL EXPERIMENT

In the study, we will give some examples to use the
method given in the study. All computations are
performed by the Mathematica 4.0 software package. We
calculate the approximate solution u,,, (t, x) by (17), (18)
and absolute error. We present the numerical results in
Table 1 and 2.

Example 1: We first consider the linear Volterra-Fredholm
integral equation

u(t,x) = £it,x) + [ FFtx, 1.6 u(r, e)dedr, tefo1] (L)

Obviously, the error r, , (t, x) is monotone decreasing Where

i1 the sense of norm. F(t,x, 7.6, u(t.0)) = tcos(x — &).

Table 1: The results of example 1

Node u i |u-ii| Node u i |u-ti]
(L L) 0.816912 0.818221 1.30E-3 (i L) 0.246049 0.248285 2.23E3
10°15 10°15

(L Z) 0.754101 0755338 1.23E-3 (l Z) 0.227131 0.227568 43764
10°5 10°3

(L H) 0.608274 0.609004 7.30E-3 (l H) 0183200 0.169654 1.356-2
10°15 10°15

(j L) 0547593 0.554697 7.10E-3 (2 L) 0.164932 0.14778 1.71E-3
10°15 10°15

(i Z) 0.505489 0.512153 6.66E-3 (2 Z) 0.15225 0.15013 212E3
10°5 10°3

R 0.407738 0.410699 2.96E-3 (2 ﬂ) 0122808 0.111906 1.0E-2
10715 10°15

Table 2: The results of example 2

Node u i Ju-ii| Node u i |u-i|
(L L) 0.408456 0.400073 6.16E-4 1 ﬂ) 0.13448 0.132859 1.62E-3
10715 2715

(L Z) 0.376616 0.377193 5.77E-4 (l i) 0.123024 0.121958 1.06E-3
10°5 10°15

(L 11 0.299202 0.299591 2.99E-4 (l Z) 0.113435 0.111281 2.15E3
10°15 10°5

(i L) 0.273796 0.276999 3.20E-3 (i ﬂ) 0183531 0.187178 3.64E3
10°15 10°15

(i Z) 0.252453 0.255402 2.94E-3 (2 L) 0.0824658 0.0799499 251E-3
10°5 10715
3u 0.200621 0.20153 9.0E-4 (2 Z) 0.0760375 0.0615089 14562
10715 10°5

(j 11 0183531 0.187178 3.64E-3 (2 11 0.0604250 0.0582806 2.14E-2
10°15 10°15
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-2t

f(t,:x)=éd2t (8cosx+e ~ -2t-1)(cosx +sinlcos(l-x))

Then u (t, x) = cosxe * is the true sclution of the
Eq. 21. The approximate solution U wuth n = 150, m = 80
with in the form (16) and error are shown in Table 1.

Example 2: We first consider the linear Volterra-Fredholm
integral equation

ult,x)=f{t,x)+ J'Ut J'é F{x,& 1)1+ u’ (&, tndedr, te[0,1]

(22)
Where
F(t,L, ti=—e"cos(x - &)
f,xy=e¢1 X ) ! (&7 (20(-44+33e” 220t-550t
’ 2 712500

-500t%-625t ycos(1- XHH(3012+125006* -15512e™
+2560t+6400t* +6500t” +8125t* )sin(1 - x)-4(-869
-3125e™ +3904e” -1220t-3050t* -30006* -3750t ) sin x).

Then

2z

2
t
u(t,x):(l-XT)e'”

is the true solution of the Eq. 22. The approximate solution
dwithn =150, m =100 with in the form (16) and error are
shown n Table 2.
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