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Abstract: In this study, we show the superiority of Chebyshev polynomials to Bessel polynomials in solving
first order ordinary differential equation with rational coefficients. Shifted Chebyshev polynomials, Bessel
polynomials as well as Canonical polynomial were generated in solving the differential equation of our choice
1 order to show the superiority of Chebyshev polynomials to Bessel polynomial. Numerical examples are given
which show the superiority of Chebyshev polynomials to Bessel polynomaals.
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INTRODUCTION

Lanczos (1938) first accurate

approximate polynomial solutions of Linear Ordinary

proposed  the

differential equations with polynomial coefficients via Tau
method. Techniques based on this method have been
used in many literatures notable among them are Ortiz
(1969), Onumanyi (1962), Freilich and Ortiz (1982) whle
technique based on Chebyshev have been discussed by
Fox (1962, 1980) and Onamanyi (1962).

In this study, canonical polynomial is constructed
based on the associated conditions of the given problem
with a simple recursive relation via Chebyshev and Bessel
polynomials.

The study of Ortiz (1969) gives an account of the
theory of the Tau method which 1s subsequently, used on
the problems considered to illustrate the effectiveness
and superiority of Chebyshev polynomials to Bessel
polynomials.

DESCRIPTION OF THE METHOD USED

Following Lanczos (1938, 1974) we define canonical
polynomials Q, (x), k>0 which are uniquely associated
with the operator. Canomnical polynomial offers several
advantages: Canonical polynomial neither depend on the
boundary conditions of the problem which we want to
solve nor on the mterval in which the solution 1s sought
and they are easily generated using a single recursive
relations.

Consider a linear differential equation y'-4y =0, y
(0) =1 which defined the exponential function

y=e" (1)
Generating the canonical polynomials

d
L=—.

dx
Lxk = kxF! - axk

Thus; Lx* —~kLQ,_, (x)+ 4LQ(x)=0

y=x"

From the linearity of L and the existence of L', we
have

X" =4Q0x) =kQ, , (x)
Since DQ(x) = x*

From the boundary conditions

Dy(x)=0x"=0
4Q, (x)=kQ,_, (x)
) (2)
Qulx)= A Qe (x)
Tt follows that
Qu(x)= Vjkis,
Chebyshev  polynomials: Following Fox (1962),

Onumanyi (1962) and George (1974) we recall some well
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known properties of the chebyshev polynomial of
degree n Where this leads to the recursive relation

T,,, = 2xT, (x)- T_, (%) (3)

Wheren =1, 2, 3,
This will be for our subsequent use

For T,(x)=T,(cos6)=1
T(x)=T (cos8)=x, ete.

Shifted Chebyshev polynomials: By choosing shifted
chebyshev polynomials T° (x)=x define with the help of
the linear transformation

Let x €[-1,1] = 6 €[ 0, 1] sup pose6 = ax + p using the
transformation, we have

However, to determine the shifted Chebyshev
polynomial

T, (x)= Ecg = g;cgek

We shall use the chebyshev polynomial to get the
shifted chebyshev polynomial by putting x = 26 -1
and to determine the values of the C% we equate
T, (x)to T, (x)

Bessel polynomial: Bessel polynomialI', (x) was
mtroduce by Bessel Friedrich Wilhelm (1784-1846) a

German Astronomer and Mathematician, defined the
hypergeometric series.

1 (x)= F(l, 14,n+ 1;7x): F(o,B.yi—x)
Where I",_ (x)= i]éﬁx”‘
k=0

then when n=1,we have

T (x)=Ti+Iix=8-x%’

=8 I1=-1
Whenn=2e. t ¢

TV, (x)=T - Iix* + Iix* =96 - 8x” + 5x*
J5=96,1;=-811=5
The Tau method: Ortiz (1969) gives an account of the

theory of Tau Method, which is applied to the following
basic problem.
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Ly(x)=P, (x)y"(x)+ .+ Py(x)=F(x)fora=x=<b

vy (x) stands for the derivative of order m of y (x) and
¥(x) = yulx)

y(x)=y,(x)= iZHU:alx‘ = 1Znu:alQ1 (x)

Where Q;(x) 18 the Canonical polynomial. Here we need a
small perturb term which leads to the choice of
Chebyshev polynomial which oscillates with equal
amplitude in the range considered, P, (x) = tT* ,(x) where
T*, (x) 1s the shifted chebyshev polynomials which are
often used with the Tau method and

n

(x)= 2 Cxf

k=0

T

n

Where C%, are coefficient of x* we assume here that a
transformation in 2 had be used to get the shifted
chebyshev polynomial.

NUMERICAL EXAMPLE 1

Consider the differential equation

Y-dy=0,  y(0) =1 (4
This defines the exponential function
y(x)=e" =1+ axs 02 B (5)
2! 3!

This converges in the entire complex plain. If we
truncate the series, we have

y(x)=1+ a0 s, (A e
2! 3! n!

This function satisfies the differential equation

n

Vo~ yn(X) = ;Xn

9

Suppose we are solving (4) m the range [0, 1]. Now by
choosing Chebyshev polynomial T*n (x) defined with the
help of the hypergeometric series
T*n(x) =F (-n,n, % ;x) as the error term on the right had
side of (4). We therefore perturbed and solve the
differential equation.
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v, — Ay, =TT, (x)y] — 4y, = 1T, (x) (8)

By introducing an auxiliary set of polynomials called
Canonical polynomial Q, (x), in which @, (x) is constructed
as shown in Eq. 10

ieQ(x)="Ykis,

If we denote its partial sum of the first (k+1) terms of
the series by S, (x) such that

Writing out polynomial T,(x) explicitly as

T, (x)= Zn:Cixk (10)

By superposition of linear operator we have

yn(x):—%ltzn:(jﬂk! S, (%) (11)

Satisty the boundary condition y, (0} =1, will yields

—%rgcgke 5. (0)=1

> Crk!

k=0

The final solution for the nth approximate becomes

—3CIkI 8, (x)
k=0 —

S cek
k=0

M, (x)
R, (x]

n

(12)

Yo (%)

Where M, (x) = Zn:Cik!Sk (x),and R, (x) :iqk!
k=0 k=il

whenn= 8,
Recall that

n

(x) 2t

k=0

T,
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1-128x% + 2688x% + 21504x” + 884480x" + 180224x°
+212992x" +131072x 7 + 327668x" R ,(x) = 794233985,

M, (x) =8, (x)—1288,(x)+ 53768, (x) - 1290248, (x)
+2075208, (x)— 216268808, (x) + 1533542408, (x)
—6606028808, {x }+ 12212057608, (x )

64 ; 256 ,
—x+—x"+
3! 41
1024 . 4396 , 16384 ., 683536 ,
X+ X + X + X

5t 6! 71 8!

Sg(x)zl-s-4x+;x2 +

M, (x) = 794233985+ 3176935936x + 6353872880x"
+847177383x° + 8B4731442x* + 6761218047x° +
46305116617x° + 2147483647x" + 2147483648

M, (1)  4.29566403x10"
R, (1) 794233985

¥: (1) -

= 54.08566599 (13)

Against the true value y,(1) = 5459815003  (14)

Thus, error = 0.51248408 (15)

However, the unweighted partial sum S,(1) gives
53.4311746603 with an error of 1.166404.

Here, we see the great increased convergence been
obtained. However, assuming the range [0, 1] 1s
accidental. If we further dealing with analytic functions,
which is defined at all points of the complex plane except
for smgular point. Hence our aim will be to obtain v(z)
where z may be chosen our error polynomial in the term
T () and solve the given differential equation along the

complex ray which connects the point x = 0 with the point
x= z. Then solving the differential equation.

Dy, (x)= T, (#) (16)

By considering z merely as a given constant we
finally substitute for x, the end point x = z.

Now, we replace the coefficient of the Chebyshev
polynomial by the corresponding coefficients of the
Bessel polynomials I* (x) defined by the hypergeometric
series.
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T*(x)=F (1, 1/4, n+l, x)

Then we obtain

(17)

Where

k=0 z*

The previous approximations have now turned into
rational  approximations giving  the
approximates as the ratio of two polynomials.
When n = 8, we have

successive

(o) 1)
Where
Ys (Z) = ?: ((j))

T,(z) =1075202° +1075202° + 53760Z' +15552002*
+707616600and B, (z) = 1246300162" + 22439188482
+4195845127° + 62063160z° + 7672857607"
17610112002’ + 5676480002 + 283046400z + 70761600

Hence
yi(z)= i: ((j)) is obtained
Putting z = 1, we have
. 3857522496
Y (2= ey

With an error of 1.368950593 compare with the
previous error of 0.51248408. This gives much closer e-
values than the wvalues obtained by the Chebyshev
weighting. Hence, the discrepancy becomes more
pronounced as we go to approximation of increasing
order.

Table 1 shows for some numerical results for the
estimates based on the example given whenx = 1.
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Table 1: Numerical results for the estimates based on the example given
whenx=1
Cheby shev potynomial ¥°(1)

Bessel polynomial y°(1)

N Approximate Error Approximate Error

3] 51.17487459 3.4232754 50.82585752 3.77229251

8 54.42696612 0.51249868 53.451267667 1.14688206

10 545477885 0.05237118 54.4484807 0.149701%6
CONCLUSION

The polynomials of Chebyshev and Bessel have been

discussed. The result obtained in the present research
shows the effectiveness and superiority of Chebyshev
polynomials to Bessel polynomials for the solution of first
order linear differential equation. The Bessel polynomials
fail to give better values than the Chebyshev polynomials
even at the end pomnt x = 1.
However, the condition that our domain shall contain
singular points satisfied. Therefore,
polynomials T* (x) gives larger errors than the Chebyshev
polynomials T* (x) for increasing values of n.

no is Bessel
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