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Abstract: A common problem encountered in high frequency financial time series is the occurrence of extreme

observations, or significant spikes in volatility, with subsequent influence on model specification, parameter
estimation and future predictions in ARMA and GARCH models. We present estimated biases of Garch(1,1)
model coefficients by unrecognized exogenous interventions at unknown dates with particular attention to

additive level outliers. We further determine their approximate and sunulated mfluences on estimated
predictions through the inflation of mmovation variance estimates. Our conclusion maintains that the severity
of bias depends on the distance of an outher from the prediction origin.
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INTRODUCTION

Recent research has shown that outliers may
have unexpectedly adverse effects on time series and
volatility modeling. It 1s possible that detected
nonlmearity 1s really due to a few, or indeed just one,
outliers, or that the presence of nonlinearity will not be
detected because of outliers, or that estimation results
change considerably due to only a few outliers.
Particularly, the modeling of volatility has been an active
area of research in finance and has been largely motivated
by the importance of risk considerations in economic and
financial markets. Estimates of volatility are used widely
for a variety of reasons, including modeling the premium
in forward and future markets, portfolio selection, asset
management, pricing primary and derivative assets,
valuation of warrants and options, designing optinal
hedging strategies for options and future markets,
evaluating risk spill-overs across markets, measuring
announcement effects in event studies and examining
asymmetries and leverage effects.

Engle (1982) first captured the time-varying nature
of volatility with the Autoregressive Conditional
Heteroscedasticity (ARCH (p)) model. Bolleserlev (1586)
generalized the ARCH model to GARCH (p, q) and this
has proved to be the single most popular time-varying
volatility modeling in practice. Garch has the ability to
accommodate 2 key stylized facts of volatility in financial
data, the persistence of volatility and volatility clusters,

leptokurtic data and mathematical and computational
simplicity. Many theoretical results, including the
statistical properties of the models and the asymptotic
properties of several estimation methods, are now
available and these provide a solid foundation for
applications of the various models (L1 et al., 1999) for a
survey, directed towards practitioners, of recent important
theoretical results for GARCH models). Franses and
Ghijsels (1999) suggested steps of correcting the data for
outliers when using GARCH models to forecast volatility.
In our work, particular attention is on additive outliers
being the most prevalent (Kleiner et al., 1979).

We determine the estimated biases (in level) of
additive outliers on GARCH parameters and their
subsequent influence on Garch (1,1) predictions. Our
approach is inspired by Hotta and Tsay (1998) who
distinguished between additive outliers that only affect
the level, but leave the variance unaffected and those that
also affect the conditional variance. They designated the
former, Additive Level Outliers (ALO) and the later,
Additive Volatility Outliers (AVQO).

In the analysis of business, economic and
envirormental data, it 1s often of mterest to determine the
effects of exogenous mterventions such as a change in
fiscal policy or the implementation of a certain
pollution control measures that occurred at some
known time points. In performing the analysis, one must
take into proper account the dynamic characteristics of
the mtervention and the dynamic structure or serial
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dependence of the observations. We consider the
additive structure for the time series {7}, with
Z‘t = Yt + et!‘ (1)

Where v, represents the effect of the intervention and e,
represents the noise term.

INFLUENCE OF ADDITIVE OUTLIERS ON
ARTMA AND GARCH INNOVATIONS

In detecting process, we treat outliers as non-
repetitive exogenous interventions at unknown time
points and these interventions only affect the level of the
series. We adopt the additive formulation in (1) where
now y, represents the effect of outliers on the series Z,
and e, is the noise term following an ARTMA (p, d, q)
model. An Additive Qutlier (AQ) only affects the series at
ty:

8(B)
ey

z a, tag(t,t,) 2)

Where E(t,t,) = {1 if t=t, and O otherwise} and ¢{B) may
contain difference operators. Following Hillmer et al.
(1983) but using slightly different notation, let u, be the
innovations estimated from the model without taking
account of outliers.
For an invertible model, multiply (3) by ¢p(BY6(B) =
m(B). Then
w=a n(B) Ett) +a, @)
Using ordinary least squares, the mmpact ¢ of the
intervention and its variance are:
&=(u,+nu, +1+.. . +n )

.U,/ wn-to,

var (d)=0,"/w, 1,

Where w,= 1+ 1w, ..+ 12
These formulae reflect the influence of an AO on all
innovations from t, onwards.

Now, considering a situation where a market
correction does not influence volatility (such as
institutional change, or a rogue trade), then a GARCH
(1,1) model with an additive outlier affecting only the
series 13 defined as

¥r 'Xt’ i'Bdt: € 8t| IIJH ~N (O,ht)
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h,=a +ae ‘*+ah, t=1,2,..T (5)
Where 1, , 15 the filtration up to time ¢, x, may contain only
some constant terms, d, equals one when t = s and zero
otherwise. In (5) the outlier does not nfluence volatility
being the lagged disturbances that enter the conditional
variance (Doormik and Ooms, 2005). Equation 5 1s a
standard GARCH model with a dummy variable as
regressor. Then, the direct impact, w, of a neglected
outlier (on the sequence of variance mnovations) is
obtained from the detection procedure of Franses and Dijk
(2000) for GARCH (1,1) models using the ‘variance
imnnovation’
Vi T Stz _ht:- (521)

as

w =2 fe,+ (5b)
Where P is a dummy coefficient.

Tn ARTMA series, outliers are known to directly affect
the estimate of the innovation variance and consequently
transfer the effect on the width of the prediction intervals,
as they are proportional to the standard deviation of the
innovations. The next study considers how the effect is
transferred to the GARCH model.

A PREDICTIVE RELATIONSHIP BETWEEN
ARMA AND GARCH MODELS

Let us assume that the coefficients of the ARIMA
models are known and suppose that the outlier at time T
has been ignored. Then the l-step-ahead prediction of
the future observation 7, from forecast origin T +m is
given by

Zyi(D) = Ty (D Zgiort 0y (D) Zopeg (Dt (6D
:Z ﬂ(ljﬁl ZT+m—]
120
The forecast weights i this linear combmation,
ﬂj(l):ﬂ1+1—1+ 2 l_lﬂhﬂ](l_h)ajzla 2, (7)
are calculated from the ," = T; weights in
1->'n, B =0(B)(1-B)' /6(B) (8)

iz]

Box and Jenkins (1976). For invertible process these
weights approach zero fairly rapidly.
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The forecast weights m” determine the extent to
which an unrecognized outlier of magnitude & affects the
forecast. If the additive outlier at time T occurred m = 0
periods prior to the forecast origin, we can write the 1-
step-ahead forecast error as

T Do = g, U-0m,,, @ )
where e, (1) = ap oo U arq FPHy apqand y, =0, 1,
.., are the coefficients of B, in X, 1B =0 @B)/[¢
(B) (1-BY], respectively, Hillmer (1984). The mean square
of the l-step-ahead forecast error in (9) 1s
MSPE (I, m, 8) 0° = Zy**", ,+ 8 [, Y (10)
and the relative mncrease m this mean square that i1s due to
the additive outlier at time T is
aMSPE (I; m, 8) = (8/0)* [ *"Zy? o, (11)
For illustration we study the increases in the mean square
forecast error for autoregressive and mtegrated first order
Moving average processes.

For meodels without moving average components
the forecast weights in Eq. 7 simplify to 7, = 0 for j>p®+d.
Only outliers that occur during the most recent pt+d
observations (that is when m<p+d-1) affect the forecasts.
In the first order autoregressive process, for example, 7,%
=and 7,” = 0 for j=1. Additive outliers that occur prior to
the forecast origin (m=>0) leave the forecasts unaffected.
If the outlier occurs at the forecast origin (m = 0), the
relative mcrease in the mean square of the 1-step-ahead
forecast error 1s given by

SMSPE (1, m = 0,8) = (8/0) b / (14° + .. + ¢,
=@/0y¢" (1 -¢")/(1-¢" (12)

As expected the effect of an outlier at the last available
observation is disastrous as the most recent observation
gets a large weight in the forecast function.

For the ARIMA (0,1,1) process, v, = v,,+a, — 0a, ,, the
n-weights are givenby n¥., = (1-6)0™ for all land 1, =
(1-8) for all =0 (s, = 1). The relative increase in the mean
square of the l-step-ahead forecast error that 1s due to the
undetected outlier at time T 1s

AMSPE (1, m = &) = (8/0) (1 — ) 62 /(I-1)(1+6)2](13)

Table 1 and 2 show these increases for various values of
1 (forecast lead time), 6 (moving average parameter), m
(time between outlier occurrence and forecast origin) and
d (magnitude of outlier). If the outlier occurs 5 or more
periods prior to the forecast origin (m>5) the effects of
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Table 1: Infhience of an additive outlier on the estimates of GARCH
(1, 1) process with estimated AR coefficient in the ARTMA
(0,1, 1) process

E(d) E(6)
b=ata, &=30 & =50 O=a 4=30 & =50
0.1 0.091 0.075 0.1 0.091 0.075
0.3 0.275 0.231 0.3 0.275 0.231
0.5 0.466 0.405 0.5 0.466 0.405
0.7 0.688 0.610 0.7 0.688 0.610
0.9 0.884 0.857 0.9 0.884 0.857

Table 2: Influence of an additive outlier on the estimates of GARCH
(1, 1) process with estimated MA coefficient in the ARIMA
(0, 1, 1) process

E() E(©)
b=ata,. &=3c 8=35a B=a &=30 8 =5c
0.1 0.165 0.247 01 0.165 0.247
03 0.344 0.403 03 0.344 0.403
0.5 0.528 0.566 Q.5 0.528 0.566
0.7 0.715 0.736 Q7 0.715 0.736
0.9 0.904 0.911 0.9 0.904 0.911

an unrecognized outlier are not too worrisome. For
example, for a moving average parameter 8 between 0.7
and 0.9 (which corresponds to a smoothing constant
between 0.1 and 0.3 in simple exponential smoothing) the
percent increases due to a & = 50 outlier m = 5 periods
prior to the forecast origin are at most 8.7%; for m = 10,
they are not more than 3%.

In summary, the analysis so far reveals that additive
outliers around the forecast origin can have a disastrous
effect on the forecast performance. Thus, the nfluence of
an AO that occurs well before the forecast origin,
however, 1s usually discounted rapidly.

Now considering the ARMA (1,1) model of the form;

¥t = art (artag) yo-as v v, (14)
Applying the transformation v ,=v *-h ,, where v , is by
construction a martingale function with E (V ) = 0 and Var
(v)=o0’
The GARCH (1,1) equivalent is

h= a1+aZYt-12+a shy (15)
or we have on substitution for v,,
Ytz'v fTata, Yr—12+az (Yrrlz'v o1)
2_ 2 2
=¥ 2_ a,ta,y, ta, (Yt; Vo)t v,
=y’ =at@a,t a)y, -av.tv, (16)

To obtain the parameter estimates of ARMA (1,1), we
have that

(17)

D=a +a,

while

(18)
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=¢=a+0o0ra=¢-0 (19

Multiplying (16) by %, v, and taking expectations, we
have

B (er er) =E {31Yt2 + (a; + a; )Yt2 Ytrlz - aerz Vit Vter }
=Y, =akE (Ytz) +(a,+ta)¥Y,—a,B (Ytz vi)+E (Vthz)
(20)
E (Yt2 ytrlz) =E {31)@712 +(a; 2, )YHZYH4 - a:sYr—12 Vit Yr—12 }
=Y =aE (Yt-lz) +{a,+ta) Y, —a,B (sz vo) T E tsz)
(21)

To obtain E (v v,,) in (21), we multiply (16) by v, and
take expectations,

E (er vi)= Eda+(@, + a) Yr—12 Vimavt v, vy
=(a;. a,) 0,/ —a, 0,/ =, 0, (22)

Substituting (22) into (20), we have

Y, =aEy)+(a+ta)Y,— aa,0° +o,/
=Y[l-(a,+a)]=a E (Ytz) + 0,(1-aa,) (23)

Similarly, substituting (22) into (21) yields

Y[1-(a, +a)] =2, E(yv.,) + 0/(1-aa,) (24)
On solving (23) and (24) simultaneously, we have
Y = a/(1-a,-a,) + (1- 2a,a,— a,”) 6,%(1- (a, + a,)
Thus, Var (y)) =Y, = (1- 2a,a,— a;") 6,°/(1- (a, + a;)
And, Y= a*(l-a,-a,) + (a,— a,’a,—a,a,") 0,%(1- (a, + a,)’
= Cov (¥ y.,") = V, = (a,— a)'a,—a,a,") 0,7/(1- (a, + a,)*

Generalizing, we have that

Y,= 312/(1 -y - 33)2+(az+aa)Y1
Y, = a,/(1-a,-a,)* +(a, + a,)’Y,

Y. = alz/(l -y 33)2 +Ha, + aa)k-l Y,

Where V, = (a, + a,)Y,
V, = (a;ta,)"Y,

V.= (a,ta; )k- : Y,

Thus the autocorrelation functions are

P = (a,— azzaa _azaaz)/ (1-2a,a,— 332)
P = (a,+ a, )2 (a,— azzaa _azaaz)/(l - Za;a,— aaz)

P = (@, + aa)k-1p1
Now, suppose the observations are generated from
z=xte, (25)

Where x,= v? follows an ARMA (1,1) model in (14) with
serially uncorrelated v, and e,1s an independent sequence
of variables, independent of the sequence of x,. The
variable e, has distribution H, given by

H=(1-a)d, +ad,

Where 8, is the distribution that assigns probability 1 to
the origin and G is the arbitrary distribution. Thus, with
probability 1-a, the AR(1) process x, itself 1s observed and
with probability « the observation 1s the AR (1) process
X, plus an error with distribution G. Further insights into
the effects of AOs to the ARCH model can be seen as
follows: Let

Z=X T8
X, =a tax,t+v,
e, ~(1- ) &, + G

Making the autoregressive transformation of z, we have

Z—a,Z, — XX te—a,e, (26)
Here we observe that the sum of the 2 uncorrelated
moving average process on the RHS of (26) is MA (1).
Thus (26) represents an ARMA (1,1) process mnplying
that an AR (1) model with AOs becomes an ARMA (1,1)
model in (26). Similarly, the ARCH (1) model with AOs
becomes GARCH (1,1). Hence, GARCH (1,1)model in (15)
1s able to capture AOs.

Thus, the characteristic features and predictive
influences of an undetected outlier in ARMA (p, q) model
can be transformed to GARCH (p, q) model.

BIASES OF GARCH (1,1) MODEL
PARAMETERS BY ADDITIVE OUTLIERS

To determine the estimated biases of the coeflicients
by additive outliers, we take note of the fact that the
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Table 3: Percentage increases in mean square predictor error duetoa
& = 50 additive outlier in the GARCH(1,1) process. Moving
average coefficient is estimated in ARTMA(0,1,1) process

Outlier five steps Outlier ten steps prior
prior to forecast to forecast

Forecast lead time | origin m = 5 origion m=10

1= 1 2 3 1 2 3
a,=0.1 2.3 1.3 0.9 2.3 1.3 0.9
a;= 0.3 1.4 0.9 0.7 1.3 0.8 0.6
a;= 0.5 2.2 1.8 1.5 0.7 0.5 0.4
a;= 0.7 84 7.7 71 0.7 0.6 0.6
a;= 0.9 7.9 7.8 77 31 3.1 3.1

estimated AR parameter will be the same as the estimated
MA parameter under the AO hypothesis of the null
distribution (Eq. 26).

The least squares estimate of the first order
autoregressive process is given by ¢ in 7Z,= $Z,, +a,
t=2,...,n1s given by

n

ZtZt—i
=2

it @7

t=

[

The additive outlier at time T = n - m implies that
7 = (7, Z, . . ., 7, follows a multivariate normal
distribution with mean vector and covariance matrix
I'={y; ;= 0°d"/(1-$";, 1 =1,j =n}. Here 1 is a column
vector of zeros, with the exception of & in the T = (n-m) th
position.

Since B (X', Z7,) = (n-1)y,BE(¥.,2%) =
(-1 vy, +ifm=>0and E (T°,_, Z7Z. )= (n-1) v, Ifm =0,
we find as a very crude first order approximation {(which,
nevertheless, 1s not too bad if n 1s reasonably large)

s, (n=Ty, ¢ -
E(d))_(nq)yn +8 _1+(5/52)(1—52)_

b s 7: =m=% _
) n—1¢(l o) (8/c)ifm=o, 7(11_1)%
ifm=0

For outliers that occur prior to the forecast origin, the
bias inthe least squares estimate amounts to -(n-1)"'¢
(1-¢% (8/a)’. For example, a 30 outlier among n = 100
observation in an AR(1) process with ¢ = 0.5 leads to a
bias of -0.034; for a 50 outlier the bias amounts to -0.095;
(Table 3). The least squares estimate is unaffected if the
outlier occurs at the last observation.

615

Using results about the moments of quadratic forms
of normal random variables and ignoring terms of order
smaller than (n - 1)™', one can show that form > 0.

20 1

E(¢)=¢-—————¢(1-9¢")(8/0)’ (29)
n-1 n-1
For our GARCH (1,1) model, the bias estimate 1s
{- (-1 (a, + a)(1-(a,ta;)" ) d/e’- b)Y, (30)

(using Eq. 5a, 17 and 18).

In considering the ARIMA (0,1,1) process to
investigate the effect of an additive outlier at time
T n—m on the estmate of the moving average
coefficient, we first calculate the effect of the outlier on

the lag one autocorrelation 1, of the first differences,
D,=Z.,-Z.,t=1,2, ... n These differences follow a
first order moving average process with mean vector m
and covariance structure y, = 0° (1467, y, = 00’ y,= 0
for j=1. The coefficients in 1) are zero, with the exception
of Ny = & and N, =- 6. Let us assume that m > 1, which
means that the outlier has not occurred during the last
two observations. Then

E(-DD)=(n-1)y, -8 EE_, D )=(n-1y,
+28% and
—a, (8/g/-h)Y
(n-1y,-8, _l+a, (n-D{+a’)
(n-1)y, +28 L 208/8" D)’
(n-Dil+a’)

(31)

E(r)=

The moving average parameter a;, and the lag one
autocorrelation p, of the first differences of an ARTMA
(0,1,1) process are related as p, = - a,/(14+a;"). Moment
estimates of a, can be obtained by replacing p, in the
above equation by r, and solving the resulting quadratic
equation for the invertible solution a,. (If the absolute
value of 1, 18 larger than 0.5, a; 1s set equal to 1 or-1).
Equation 31 shows us how the outlier affects the
expectation of 1. Accordingly, a very crude approximation
of E (a,) = a;, can be obtained by solving the quadratic
equation B(r,) = — a, / (1 + a;%.). The invertible solution
(that 1s, the one solution that 1s between -1 and +1)

—

1
-1
VAEmF

- +
2E(r)

(32)

a5 =
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allows us to quantify the effect of an additive level outlier
on the moving average estimate in the ARTMA(0,1,1)
process thereby transforming same to the GARCH
parameters. For example, a 50 outlier among n = 100
observations in the GARCH(1,1) process with a; = 0.5
leads to E(r,) = -0.429 and E(a,) = 0.566, Table 3.

Since the basic version of the least squares model
(used for estimating ARMA parameters) assumes that the
expected value of all error terms, when squared, remains
the same at any given point, the simple extension follows
as the same assumption 1s the focus of ARCH/GARCH
models.

Thus the result of our research shows that the
coefficient estimates of GARCH models are seriously
affected by additive outhers thereby extending a
corresponding effect on forecast performance.

The research also reveals that the severity of bias
decreases with the outlier distance from the forecast
origin and so the least squares estimate 13 unaffected if
the outlier occurs at the last observation. Thus, the impact
of an unrecognized outlier that occurs 5 or more periods
prior to forecast origin (or end of series) is automatically
discounted.

Since the GARCH (1,1) model 1s directly set up to
forecast for just one period, it turns out that based on the
one-period forecast, a two-period forecast can be made.
Ultimately, by repeating this step, long-horizon forecasts
can be constructed. Thus, the GARCH meodels are mean
reverting and conditionally heteroskedastic, but have a
constant unconditional variance.

Fmally, although the effect of an additive level outlier
15 bounded and independent of GARCH model for the
series, the difference in estimation between the outlier
corrected and uncorrected series is always sigmficant.
Hence, outlier detection plays an important role in applied
time series modeling, testing and inference as they can
lead to model misspecification, biased parameter
estimation,  poor inappropriate
decomposition of the series.

forecasts and

616

REFERENCES

Bolleserlev, T. 1986. Generalized Autogressive
Conditional heteroskedasticity. J. Ecconometrics,
31:307-327.

Box, GE.P. and G.M. Jenkins, 1976. Time Senes Analysis:
Forecasting and Control, (2nd Edn.) (Holden-Day,
San Francisco).

Doormik, T.A. and M. Ooms, 2005. Qutlier detection in
GARCH models. Mimeo, Nuffield College.

Engle, RJF., 1982,  Autogressive
heteroskedaticity with estimates of the variance
of United Kingdom inflatation. Econometrical,
50: 987-1006.

Franses, P.H. and D. van Dylk, 2000. Outlier detection in
GARCH models. Econometric Institute Report
El-9926/RV, Erasmus University Rotterdam.

Franses, P.H. and H. Ghyjsels, 1999. Additive Outliers,
GARCH and Forecasting Volatility, Int 7.
Forecasting, 15: 1-9.

Hillmer, 5.C., W.R. Bell and G.C. Tiao, 1983. Modelling
Considerations in the Seasonal Adjustment of
Economic time series, in Zellner, A. (Ed.), Applied
Time Series Analysis of Economic Data, Washington,
D.C: US. Department of Commerce-Bureau of the
Census, pp: 74-100.

Hillmer, S., 1984. Momtoring and Adjusting Forecasts in
the presence of additive outhers, J. Forecasting,
3: 205-215.

Hotta, LK. and R.S. Tsay, 1998. Outliers in GARCH
processes. Mimeo, IMECC, Brazil and Urniversity of
Chicago.

Kleiner, B., R.D. Martin and D.J. Themson, 1979. Robust
estimation.

Li, W. K., 5. Ling and M. McAleer, 1999. A survey of
recent theoretical results for power spectra. J. Royal
StatistSoc. Series B, 41, 313-time series models with
GARCH errors (submitted).

conditional



