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Abstract: In this study, we examined, the Susceptibles-Infectives-Removed/Recovered, (SIR) epidemic model
and applied it to horizental transmission of HIV/AIDS in a homogeneous mixing population. with additional
assumption that ATDS virus does not kill instead, ATDS-infectives are removed from circulation until death by
non disease induced. Also the stability of the equilibrium points are examined via the basic reproductive
number of the mfection and trace-determinant condition of the Jacobian matrix at the equilibrium point, for a
system of non-linear differential equation. The threshold conditions on the model parameters, which allows
stability of the disease-free equilibrium and the endemic equilibrium points are derived and their biological

interpretations given.
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INTRODUCTION

The compartments of Susceptibles, Infectives and
Removed classes, simply called SIR model is often applied
to contagious illness in a closed population, The simplest
of this type of model without vital dynamics was
proposed by Ronald Ross in 1911 (Bailey, 1975) as,

S = -BIS
1=-IS

Where B, 15 the transmission rate, while S(t) and I(t) are
the population (density) of the susceptibles
infectives. However, Kermack and Mckendrick extended
Ronald Ross epidemic model with a general time
infectivity kernel, A(T), (Diekmann et al., 1993) and the
following assumptions:

and

A single infection triggers an autonomous process
within the host.

The disease results in either complete immunity or
death.

Contact are according to the law of mass-action.

All individuals are equally susceptible.

The population 1s closed.

The population size 15 large to sustain a deterministic
description.

These assumptions leads to the integral equation,
(Diekmarm et al., 1993)
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S(H)= SO A (D8(t- Tde (1)

Where S(t) 1s the (spatial) demsity of susceptibles,
{number of individual per unit of area) and A(T)is time
infectivity kernel, described as the infectivity of an
individual that became infected T umts of time ago,
(Diekmann et al., 1993) -5(t) is the incidence at time t
and-3(t-1) is the number of individual arising per unit of
time who at time have been infected for T tiune umnits,
(Diekmann et al., 1993). However, defining,

I(t) = —éj:K(r)S(t _dt= —%J'_th(t —nSitdr (2

and differentiating, using time-infectivity kernel,
A(t)=pe™, Diekmann et al (1993) obtained the

following system of differential equations,

S(0=-pS{L) I(t)
I(t) = PS( I(t) - v I(t)

(3)

Where P is the probability of transmission of the
infection from an infectious person to a susceptible
person and vy is the rate of removalrecovery of the
mfectives. Some studies simply refers to this model
as Kermack and Mckendrick epidemic model, as seen
in the research of Murray (1989) and Leah (2005) while
others like Diekmann ef al. (1993) disagree, noting that
the Kermack and Mckendrick model deals with a general
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time-infectivity kernel and that model (3) satisfies only
the mfectivity kemmnel K(T) = pe . However, the conven-

tional Susceptible-Infective-Removed/recovered model
(SIR) without vital dynamics has the form, (Murray, 1989)

8(t) = PS(t) I{t)

I{t) = BS(O It - al(t) )
R(t) = al{t)
Where « 1s the rate at which fectives are

removed/irecovered from the infection, P is the rate of
transmission from a susceptible to an mfectious person.
While S(t), I(t) and R(t), are the population of
susceptibles, infectives and removed/recovered classes,
respectively.

In this research, we mtends to use the approach n
Eq. 1-4 to examine the transmission dynamic of HIV/ATDS,
with vital dynamics.

THE MATHEMATICAL MODEL

Let the followmng parameters be represented as
follows:

g

Probability of transmission of the virus from an
infectious person to a susceptible.

The birth rate, assumed the same as the death rate.
The rate at which HIV-mfected developed AIDS.

. The average number of partners per unit time
Population of susceptibles, (HIV-negative).
Population of HIV-mfectives, (HIV-positive).

. Population of ATDS-infectives.

B aOR O

We have assumed in this compartmental model that
death rate is the same as the birth rate and death in the
AIDS class 1s not disease induced. Introducing AIDS
class of infectives, denoted A m the SIR epidemic model,
reduces it to a simple SIA model, where the
removed/recovered class forms the class of AIDS
mfectives, without disease mduced death. Since they are
assumed, non-sexually active and are quarantined. They
don’t contribute to transmission dynamics of the
infection.

However, this is not realistic but would be employed
for the purpose of this study. Also suppose the following
assumptions hold:

Infectives remain so for an exponential distributed
period of time with parameter [3,

All individuals are exposed to a death rate by,
Susceptibles produce offspring at a per capital rate b;
Infectives do not produce offspring (smce they are
sexually inactive).
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Latency of HIV is negligible.

HIV-infectives progress to ATDS at the rate of @
The average number of partners per unit time, by a
susceptible with an  HIV-infective, of disease
transmitting type is C.

These assumptions lead to the following system of
non-linear ordinary differentiation equations,

IS
S=bN-BC——bS
N

I:BCE—ocI—bI (5)
N

A=al-DbA
Where S+I1+A=N

At the equilibrium points, we have, the following
equations satisfied,

ds _di_da

e (6)
dt dt dt
The disease-free equilibrium point are determined as,
E; = (N,0,0) and the Jacobian matrix at the equilibrium
point 1s obtained as,

-b -pC 0
Je,=| O BC -{o.+b) 0
0 o b

If 4, (j =1, 2, 3) are the eigenvalues of Jz, » then

PC—(a+b)-A 0
(A+b)det =0
o -b-A
Let
BC— (o +b) 0
B=
o -b

then we would have det(B) = (e+b)b-bpC, which is greater
than zero whenever pC <w+b. Also the B = BC-(z+2b)<0,
since (e +2b)>pC. Where BC is the net transmission of
the virus and 1/c+b is the average length of mfection for
AIDS. Thus the trace of B 1s negative and the disease-
free equulibrium point ; is stable provided (BC/e+b)<1.
To have an ATDS free stable population, the product of
the net transmission of HIV-infection and the average
length of infection for ATDS should be less than unity.
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POSSIBILITY OF EXISTENCE OF
ENDEMIC EQUILIBRIUM POINT

Let
E, = (8% [* A%)= N(O:+b) pc . BC 1],
BC a+b a+b (7)
where %= N (@2 o BC g au BC
a+b a+b

(5*, [*,A*), 13 a non-zero endemic equilibrium point.
Thus, the population consists of some proportion of each
type, provided, B, = (S*, I*,A*) are all positive quantities.
And for T* and A* to be positive we must have,

BC
o+b

=1 (8)

The population of infectives T* and A* ATDS, exist if
(8) 1s satisfied. The Tacobian matrix at the endemic
equilibrium point is given by,

BCb

PC——+Db)-b -(a+b) 0
a+b
I, =| BCh(BC-1) 0 0
0 o -b
The eigenvalues of matrix J, satisfies,
BC(Bic-s-b) -b-A -(ot+b)
a+b
(A +b)det =0
BCb(BC-1) - A
Let matrix
BC(B—C+b)7b o +b)
a+b
B=
BCh(BC-1) 0

Then the determinant of matrix B = BCb (a+b) (PC-1)
> 0, if pC=1. However, evaluating the trace of matrix B
we get, trace =

pC

PC(——+Db)-b= (BO)*
a+b

+BCb-b.>0
a+b
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which contradicts the requirment of stability for an
equilibrium point. Thus the endemic equilibrium point, E;.
is not stable. However, Mugisha et al (2005) and
Heffernan et af. (2005) gave nsights into the use of the
basic reproductive number R; in analyzing stability of
endemic equilibrium point.

They cobserved that if R;>1, then the system has a
unique  endemic equilibrium point that 15 globally
asymptotically stable and the disease-free equilibrium is
unstable. However, if R,<l, then the disecase-free
equilibrium is locally asymptotically stable and the
endemic equilibrium 1s unstable.

Adopting this approach using the next generation
operator by Diekmann (Herffernan et al, 2005) we
categorized the population into two classes, as X = (3),
Z = (1) and the disease-free equulibrivm 18 E, = (N, 0, 0). We
would then get the following equations from our model, in
line with Herffernan er ai. (2005) as,

X=bN— Bcgfbxz fIX,Y.7
N 9
7= Bc%f o+ B)Z =h(X,Y,Z)

Let the matrix H = ¢h/@z, then H = BC-(z+b)
Letting H= M-D with M=>0 and D=0 a diagonal matrix,
M = pCand D = (e+b)

The basic reproductive number is defined as spectral
radius (dominant eigenvalue) of the matrix M D
(Mugisha et al., 2005, Herffernan et «l, 2005) and
obtained as,

pC
{a+b)

R,=p(MD )=

Where BC is the net transmission rate and 1/etb is
the average  duration of infectiousness, or the
incubation period, for ATDS, in this study. For a stable
disease-free equilibrium point, we must have

BC

(.t b)

<1 or PC<(a+b)

This requirement 1s also obtained using determinant/trace
method of investigating stability of equilibrium point for
two system of non-linear differential equations above.

SUB-MODEL WITHOUT PROGRESSION
TO AIDS (@ = 0)

Consider a sub-model without ATDS and using the
assumption that the population 1s constant, we reduce our
system in Eq. 5 to a two equations model in Susceptibles
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and HIV-infectives, consistent with our earlier assumption
that ATDS 1s not death mduced. Thus, the class of AIDS
is regarded as removed/recovered class equivalent to a
simple SIR model, as in Murray ef al. (1989) and Bailey
(1975). Thus we would have,

S:bN—BCE—bS
N

(10)
I:BCEbe
N

Where A=N-1-8

The equilibrium points are (N, 0) and (Nb/PC),
b{N-S) ). The Jacobian at the Disease-Fee Equilibrium
b
points, (DFE) 15,

b BC

BC-b

stability of DFE implies that the trace <0 and the
determinant >0, (Kimbir ef al., 2003). Using matrix J; the
equilibrium pomt is stable if the trace <0 and the
determinant >0. But trace = PC-2b<0. This is negative
when (BC/2b)<1 and determinant = b-PC>0, only when
b>BC or (PC/by<<1. Thus stability implies (BC/b)<1. This is
consistent with the value of the basic reproductive
number of HIV-infection, obtained using next generation
operator as, R, = PC/b, with « 0. The disease-free
equilibrium is locally asymptotically stable if R = (pC/by<1,
which 1s consistent with the model for HIV/AIDS, with
¢ #0. Consider, the endemic equilibrium point,

Nib’ N-8)
pc

E=(
where Nb/BC 1s the fraction of the population of the
susceptibles and N-S is the fraction of HIV-mnfectious
population. The associated Jacobian matrix,

BCN-S) b
N
Jral:
BCON-5) .
N
The trace
-pC BC
I, =——(N-8)-b<0=-—(N-8)-b<0.
5, N( )—b< N( )—b<

and the determinant
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Py g0

N
both satisfy the required conditions for stability of
equilibrium point. Thus the endemic equilibrium point E,
1s stable.

CONCLUSION

Our intention in this research has been to study the
STR epidemic model and apply it to transmission dynamics
of HIV/AID m a proportional mixing population, with vital
dynamics and also examined the concept of non AIDS
induced death as alternative to the conventional
assumption of AIDS induced death and derive the
threshold conditions for the two equilibrium points, DFE
and EE points. Two types of models are examined in this
respect, these mcludes a model for HIV and AIDS
transmission dynamics and a submodel for HIV
transmission dynamics without AIDS. The disease-free
equilibrium and the endemic equilibrium points are
determined and also their stability examined, using the
basic reproduction number of the infection and trace and
determmant stability condition of equilibrium points, for
two systems of non-linear differential equations. For the
model with progression from HIV mfection to AIDS.
(#0), we observed that the DFE is globally
asymptotically stable, whenever it exists, provided that
{(pC/atb)<1 and the endemic equilibrium point is not
stable. For the submodel without disease progression, to
AIDS, (o = 0). we observed that there exists a uruque DFE
which is locally asymptotically stable, provided, (BC/b)<1.
Otherwise there exists an endemic equilibrium point which
is locally asymptotically stable. In both cases the birth
rate should be greater than the net transmission of the
HIV-infection, as obtamed via R, and the trace-
determinant stability condition for system of non-linear
differential equations.

In biological terms we can deduce the result of the
study as:

The condition PC<g+b, in the HIV/AIDS trans-
mission model, means that the net Transmission rate
mn the model of HIV/AIDS mnfection 1s less than the
sum of the rate of progression from HIV to ATDS and
the birth rate. This threshold condition is observed in
the computation of R; and the other method. Thus to
minimized the transmissibility of HIV-infection and
AIDS, we would need to lower the net transmission
below umty and decrease the AIDS progression rate
so that we would have longer incubation period for
ATIDS. HIV-infectives who develop ATDS after long
incubation period are then removed, waiting to die by
natural cause and not disease induced death.
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The condition (PC/b)<1, in the submodel without
ATDS, means that net transmission of HI V-infection
15 less than the birth/death rate. Thus for the virus to
be eradicated the birth rate should be greater than
net transmission rate.

In general, increasing the birth rate, decreasing ATDS
progression rate and Mimmizing net Transmission
for both cases may eradicate HIV/AIDS, but would
give long incubation period for ATDS.
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