Meth’Jl Research Jourmal of Applied Sciences 2 (5). 579-583, 2007

Onllnae

© Medwell Journals, 2007

Singular Perturbation Problems. A Study by A-Convergence
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Abstract: This research is devoted to singular perturbation problems associated to a thin layer of thickness e.
We study asymptotically as £ » O the elliptic problem -div (a,Vu,} + b,u, = f, on{} with the condition u, = 0 at the
boundary 2Q. The convergence under consideration is T'-convergence with the strong topologie of L* (€).
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INTRODUCTION

We are concerned with the study of the following
elliptic problem

{

where the coefficients (a,) and (b,) are taking respectively
very small and very high values on a subset X, = Q (a
“thin layer” of thickness £) and 1 on O\ X (¢ is a
parameter which converges to 0) and f 1s a given function
in L*(Q). The most natural approach for these types of
problems relies on I~convergence of the corresponding
functionals. In this study we generalize a well known
result due to Sanchez-Palencia (1980).

This problem has been studied in a variational way n
Attouch (1984) where the conductivity coefficient a, is
taking very small values on a small subset of € and the
coefficient b, is equal to 0 and which is known as the
conductivity equation. For details for this kind of
problems, we refer to Huy and Sanchez-Palencia (1974)
and Sanchez-Palencia (1969, 1970, 1974).

-divia, Vu)+bu=1f onQ
u=0 onddd

(1.1)

A BRIEF INTRODUCTION TO I''CONVERGENCE

The convergence under consideration 1s the I'-
convergence of functions especially designed m order to
study convergence of solutions and their corresponding
minimization problems: It is a “variational convergence”.
Such convergence was introduced by De Giorgi and
Franzoni (1975) is nowadays a commonly-used tool of
the calculus of variations. For further details about I'-
convergence in a general setting we refer to Braides and
Defranceschi (1998) and Dal Maso (1993).

In what follows X 15 a metric space, u an
element of X, F a function from X into [04+]. In the
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applications X will be a space of functions u on
some open domain £ of R* and F a functional on X

Definition: 2.1. Let X be a metnic space and for £ 0 let be
given F* 1 X - [0,+02]. We say that F* I'-converge to F on X
as € - 0 and we write: F =T - limF",
if the following two conditions hold
(LLB) Lower Bound inequality: For every u e X and every
sequence (u,) such that u, £ u in X, there holds
lim inf Fé(u,) =F(u), as € = 0 (2.1)
(UB) Upper bound inequality: for every u? X there exists
(u) st u, ~uinXand
Flwy=lmF (u),ase~ 0 (2.2)
Remark 2.1: Condition (LB) means that whatever
sequence we choose to approximate u, the value of F* (u,)
15, 1n the limit, larger than F(u), while condition (UB)
implies that this bound is strong, that is, there always
exists a recovery sequence (1) which approximates u so
that F* (u.) - F(u). Notice that if (L.LB) holds, then equality
(2.2) can be replaced by
lim sup F° (u,) = F(u), as £-0. (2.3)
This notion enjoys useful compactness properties
and, under suitable equi-coerciveness assumptions, is
strong enough to guarantee that minima and minimizers
for problems related to F* - 0 converge to the
corresponding minima and minimizers for problems related
to F. The proof of the “liminf inequality” is usually the
most techmcal part in a I'-convergence result, while the
form of “recovery sequences” gives an insight of the
nature of the convergence.

The main variational properties of I'-convergence are
the following
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Theorem 2.1: Let F° a sequence of functions from X into
[0,+0] which 1s I'-convergent to F

*  Stability of mimmizing sequences: Let us assume that
there exists a minimizing sequence u, 1.e.,

F® (u,) = inf F* (u) + ¢, with &, - 0 which 1s relatively
compact. Then

inf F* (u) » min F (u) as € - 0 and every cluster point of the
sequence u, minimizes F over X.

Stability under continuous perturbations: For every
continuous function G, then

I'-lim(FF+F)=F+G

PROBLEM POSITION

Let € be a bounded open of R" with smooth boudary
9. Forx” =(x,, X, ..., Xy.,) and £ > 0 (period of a composite,
perturbations, or a thickness of a thin layer), we define the
following sets

T = fx= 00, %,) e Qx| <82}, Q= OV E,
Ql={xeQ, +x, =0},

I ={xeX +x, =0},

QF={xeQ +x, >0}, Z=Qn{x, =0}

and 80" = 80~ {£x,, > 0}

We define the coefficients

1 ifxeQd,
a = ) Jand
oA, ifxeX,
b - 1 if xeQ),
= |1, ifxex,

Where A, and i are positive reals converging to zero
as e~ 0.

We are concerned with the asymptotic behaviour as
£ - 0 of the solution u, of the problem (1.1) or in a more
general framework with the asymptotic analysis of
variational problems of the form

inf{FE(u) - jfudx ,ueH! (Q)]
0
Where

vau|* + b, Ju) ydx if ue H ()

Fg(u):1/2£(as a.1)

+oo  otherwise
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We show that the limit equation associated with (1.1)
as € » 0 depends on the parameters k and k” defined by

A
k = lim2 and k' =lime | as e—0 (3.2)

€ €

Where k andk” £ [0,+<] . The lack of coercivity of the
solutions in the Scbolev space H| (L) leads to the use of
an extension techmque (lemma 4.2).

Under some hypothesis we show that the solution of
(3.3) or more precise its extension converges to u for the
strong topology of L*(Q) , where u is a solution of a
transmission problem (corollary 4.5). The local character
of the I'-convergence reduces then the problem to a
unidimensionnal variationnal one where a test-fonction
will be constructed. Drawing inspiration from Sanchez-
Palencia (1980) the integral on X, has the following form,

kL[u]sz

Where [u] = u’ - u, 1s the jump of uacross % and u” (resp.
u’) 18 the trace of ul,, (resp. of ulg) on 2. So that it 15 of the
following form

L(a(u*)2 +bu ) + 2eu'u )do

with a = b =k and ¢ = -k. The question 15 naturally to ask
how to know if the functional (I'-limit) is of the form:

F(u)= 1/2J.Q\E(|Vu|2 +[uf ydx
+ 1/2jz(a(u* ¥ +b(u” )+ 2cu'u Jdo

Ifue H{Q andu=0onT
and F(u) = + o if us LAQNH(Q\E),

Where the constants a, b and ¢ depend onk et k’. u’
{(resp. u ) are the traces of ultY’, (resp.ul Q) on X The aim
of this research is to give an answer to this question.
This result is a generalization of those obtained by
Attouch (1984) and Sanchez-Palencia (1980) in the case
where a =b=kand ¢ = -k.

RESULTS

Our purpose 15 to establish the result of TI'-
convergence of the functional Fi(u). From the theorem
2.1, it suffies to find a topology for which the minimizing
sequences are relatively compact. In fact, the solutions
are not bounded in H,'(}) and this is due to the
behaviour of (1), inside X,. To overcome this difficulty
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Wwe use an extension argument. For the passage to the
limit, we reduce the problem to a one-dimensional one
(lemma 4.6). From the following proposition we obtain the
convergence in L*({Q)-strong.

Proposition 4.1: Let A, and 1, be two strictly positif real
numbers, then, for every minimizing sequence (u,)>0

verifying

a) u - uinL{Q)-strong
b) There exist a constant M >0, such that

I° (u))<M , then u, converges to u in L(€2)-strong.

The hypothesis b) implies the existence of two
constants M, > 0 and M, > 0 such that

jg |Vu52+ usziM1
and
Lﬁ?ug VuSZ+LuSZ£M2

The second inequality does not exclude the
possibility that the gradient of u, maybe infinite and this
suggests that the solutions will tend to a limit everywhere
exept on X. We will show that this hmit-function does not
lies in H'; Q.. We then study the convergence in £2,, after
the modification of the solutions m X To be precise, we
have the following result

Lemma 4.2: (extension lenmma): There exists a linear and
continuous operator P*, (tesp. F,) from H', (€2",) to H'(Q"),
(resp. from H'(Q,)) to H' () such that:

wul e H(QD): Prul =ul on QO

More precisely, i, if is any function n D)
we define i’ by modifying (i’ inside T7 .
This is expressed by

+ ] _f Q+
P;u;:ﬁ;(XF,XN): uS(X,XN.)l xe )
u (xle—x)if 0<x, <&/2
The construction of P, for (-£/2<x,<0 ) 1s analogous
and defined by

u, (xLx,if xe Q2

u(x,—e-x)if —e/2<x,<0

=

Pru. =0,(x,xy) —{
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Under the hypothesis of proposition 4.1, we have

Lemma 4.3: {i! (resp. 0 ) is bounded in H'(Q"), (resp. in
H'(C)), the boundedness is independant of € and we have
ii; » u” in L3(Q")-strong (resp. 6]~ u in LY(Q)-strong),
consequently, u'eH'(Q") and ue H'() i.e., u g H' (D).
In other words
I'- lim F* = 40 on LA QD).

We are now in position to estabilish our main result.

Theorem 4.4: We have
LA-I" - lim F(u,) = F(u), with

U2 [ vl +[u]ydx+

19

Flu) = j(a(u*)z +b(u )+ 2entu )de

ifueH'(Q\X)andu=0onT
+aoif ue LV H{QVE)

Tt suffies to find the coefficients in the quadratique
form, functions of k and k™ and find the hmit problem
equivalent to the minimization of

F(u)fjfudx

Thus, we have

Corollary 4.5: ( The limit problem,).
u, converges in s-1.7 (Q) to u (solution of
the transmission problem), in H'(AZ).

-Au+u=f on Q
R

—=au’ +cu”
N

on L

=—cu'-bu” onk

N

To etabilish the upper bound inequality of definition
2.1, or (2.3) of remark (2.1), it suffies to construct a
sequence (u,)e H,(CQ) such that u, » u in s-L*(Q)) and
lim supF* (u) < F(u). For the construction of such a
sequence, we take A ~ ke and i,~ k’e in the expression

: 1 z
+_

=

Vu,

Jdx

uE

L= 0,
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Fora fixed x, letu, (x°, %) = @(x°, % /€) with x,, /e=t;

thus
SU2 1 3
L=kf ([, (oo + et Hd0do
such that
@ -12)=a=ux", -&/2)=u,
and

¢ (F/2y=a=ux’, +e/2)=u",

where U, and are respectively the traces of u on x, =
+e/2 and on x,, =-8/2.

We then have a one-dimensional variational problem
which depends on two real parameters « and f:

Lemma 4.6: Let

inf
@eH [~ 112,+1/2]

f{a.B) =

+1/2
j—lfz

The solution ¢, of the above problem exists in H' [-
1/2, +1/2], where

(o'

2 1 2
— d
el t}

Pexpd-cexp(-6)
exp(28)-exp(-28)
cexpd-Bexp(-8)
exp(26)-exp(-28)

with 8 = 1/(2+/kk")

1) 0= exp(2t6) +

exp(—2t5)

fla, B) = Ao’ +BB’ +2Cap, where,

A—B- 1 c.osh26
Jklc' sinh 28
-2

1
and C=——
k' sinh 28

i)

To prove the convergence we use the following trace
lemma

Lemma 4.7: Let u! =u_(x',2e/2) which converges to
u(x,0)u(x,0) for the weak topology of H'({Y") then
converges tou,(x',+€/2) for the strong topolegy of LX)

Proof of theorem (4.4): We proceed mto two steps, in the
first step, we suppose u “smooth”, then in a second step,
we achieve by using a density argument. Let u be mn
HYEZ) such that ul. = 0. We put

{

u if x,>¢&/2 41

P,(%y/€) otherwise
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by application of lemma 4.3 in the particular case where
u® = u and we use then the result of lemma 4.2, we prove
the convergence of the fonctionnelle I,

to j[a(u*)z +b(u™ Y + 2euu ldo

z

when € —0 wherea =b = k(23) C?Sh%
sinh28
1
and ¢ =-k(206)—
sinh28

Remark 4.1: The function defined in (4.1) 1s, in fact,
nothing but, the test-function in the weal: formulation of
problem (IT,) it can also be written in the form

u, =A, cosh(xiN

ek’

J4 B, sinh(—2)
8 r

ik

Step two: We estabilish now the inequality
F =s-LXQ)-lim inf, F*

We prove that for every converging sequence v, of
H(Q). v, ~ uinL(Q)-
strong, we have F(u)<liminf F*(v*). The idea 1s to compare
via a subdifferential inegality F*(v) with F(u%), which from
the step a), converges to F(u). We obtain
F(v)=F(u) + 1, , where

I, = jV’uEV(VS —u)+u (v,—u )+
QE

u (v

s

E_uE)

[ keVu Viv, —u)+ 1

s k'e

We establish at the end of the proof that T, - 0, by

using the lemwmas 3.2 and 3.3. The theorem is then
completely proved.

CONCLUSION

We have proved , in fact, that the functional F(u) is
a variational limit of the sequence Fi(u,), i.e., F(u) is the I'-
limit of F¥(u,), as € -— 0. In this case, we have proved that
uis net a function of H;(Q) . The demam of the I'-limit F
is H'(Q"u Q). We have alsc find the particular case of
Sanchez-Palencia, whenk’ =+« , thena=b=kand ¢ = k.
Note that for the organization of this paper and for the
well understand, most of the lemmas are easy to prove.
So that we have only focus our main idea to the
essential part of this paper. It 1s interesting to notice
that 1t 1s possible to extend this study by applying
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the main idea to many and various problems that already
exist in many situations, such as homogenization.
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